Loading…

Hybrid CNN-SVM Classifier Approaches to Process Semi-Structured Data in Sugarcane Yield Forecasting Production

Information communication technology (ICT) breakthroughs have boosted global social and economic progress. Most rural Indians rely on agriculture for income. The growing population requires modern agricultural practices. ICT is crucial for educating farmers on how to be environmentally friendly. It...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2023-04, Vol.13 (4), p.1169
Main Authors: Bhattacharyya, Debnath, Joshua, Eali Stephen Neal, Rao, N. Thirupathi, Kim, Tai-hoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-c4bf833a59aeb313932acc1798b828e67a85f93074125a21a61427d42d7763833
cites cdi_FETCH-LOGICAL-c418t-c4bf833a59aeb313932acc1798b828e67a85f93074125a21a61427d42d7763833
container_end_page
container_issue 4
container_start_page 1169
container_title Agronomy (Basel)
container_volume 13
creator Bhattacharyya, Debnath
Joshua, Eali Stephen Neal
Rao, N. Thirupathi
Kim, Tai-hoon
description Information communication technology (ICT) breakthroughs have boosted global social and economic progress. Most rural Indians rely on agriculture for income. The growing population requires modern agricultural practices. ICT is crucial for educating farmers on how to be environmentally friendly. It helps them create more food by solving a variety of challenges. India’s sugarcane crop is popular and lucrative. Long-term crops that require water do not need specific soil. They need water; the ground should always have adequate water due to the link between cane growth and evaporation. This research focuses on forecasting soil moisture and classifying sugarcane output; sugarcane has so many applications that it must be categorized. This research examines these claims: The first phase model predicts soil moisture using two-level ensemble classifiers. Secondly, to boost performance, the proposed ensemble model integrates the Gaussian probabilistic method (GPM), the convolutional neural network (CNN), and support vector machines (SVM). The suggested approach aims to correctly anticipate future soil moisture measurements affecting crop growth and cultivation. The proposed model is 89.53% more accurate than conventional neural network classifiers. The recommended models’ outcomes will assist farmers and agricultural authorities in boosting production.
doi_str_mv 10.3390/agronomy13041169
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_edc6e4270e604485afbfb764d2faa153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747307396</galeid><doaj_id>oai_doaj_org_article_edc6e4270e604485afbfb764d2faa153</doaj_id><sourcerecordid>A747307396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-c4bf833a59aeb313932acc1798b828e67a85f93074125a21a61427d42d7763833</originalsourceid><addsrcrecordid>eNpdkdtrFDEUxgdRaKl972PA56m5TS6Py2ptoa3CquBTOJPLmGU3WZOZh_3vzbpFxARywuH7fXyc03U3BN8ypvF7mEpOeX8kDHNChH7VXVIsWc-ZHl7_87_ormvd4nY0YQrLyy7dH8cSHVo_P_eb709ovYNaY4i-oNXhUDLYn76iOaMvJVtfK9r4few3c1nsvBTv0AeYAcWENssExULy6Ef0O4fucvEW6hzTdGJd08ec3nZvAuyqv36pV923u49f1_f94-dPD-vVY285UXN7x6AYg0GDHxlhmlGwlkitRkWVFxLUEDTDkhM6ACUgCKfSceqkFKyRV93D2ddl2JpDiXsoR5Mhmj-NXCYDZY525413VvhGYy8w52qAMIZRCu5oACDDyevd2auN49fi62y2eSmpxTdUYcEHKphoqtuzaoJmGlPIcwHbrmsDszn5EFt_JblssZk-AfgM2JJrLT78jUmwOW3V_L9V9hsvkpWw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806452636</pqid></control><display><type>article</type><title>Hybrid CNN-SVM Classifier Approaches to Process Semi-Structured Data in Sugarcane Yield Forecasting Production</title><source>Publicly Available Content Database</source><creator>Bhattacharyya, Debnath ; Joshua, Eali Stephen Neal ; Rao, N. Thirupathi ; Kim, Tai-hoon</creator><creatorcontrib>Bhattacharyya, Debnath ; Joshua, Eali Stephen Neal ; Rao, N. Thirupathi ; Kim, Tai-hoon</creatorcontrib><description>Information communication technology (ICT) breakthroughs have boosted global social and economic progress. Most rural Indians rely on agriculture for income. The growing population requires modern agricultural practices. ICT is crucial for educating farmers on how to be environmentally friendly. It helps them create more food by solving a variety of challenges. India’s sugarcane crop is popular and lucrative. Long-term crops that require water do not need specific soil. They need water; the ground should always have adequate water due to the link between cane growth and evaporation. This research focuses on forecasting soil moisture and classifying sugarcane output; sugarcane has so many applications that it must be categorized. This research examines these claims: The first phase model predicts soil moisture using two-level ensemble classifiers. Secondly, to boost performance, the proposed ensemble model integrates the Gaussian probabilistic method (GPM), the convolutional neural network (CNN), and support vector machines (SVM). The suggested approach aims to correctly anticipate future soil moisture measurements affecting crop growth and cultivation. The proposed model is 89.53% more accurate than conventional neural network classifiers. The recommended models’ outcomes will assist farmers and agricultural authorities in boosting production.</description><identifier>ISSN: 2073-4395</identifier><identifier>EISSN: 2073-4395</identifier><identifier>DOI: 10.3390/agronomy13041169</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural economics ; Agricultural practices ; Agricultural production ; Agriculture ; Analysis ; Artificial neural networks ; Classifiers ; convolutional neural network ; Crop growth ; Crop yield ; Crop yields ; Crops ; Education ; ensemble learning ; Evaporation ; Farmers ; Fertilizers ; Forecasting ; Gaussian probabilistic method function ; Information communication technology ; Information technology ; Mathematical models ; Methods ; Moisture effects ; Neural networks ; Probabilistic methods ; Soil classification ; Soil moisture ; Soil water ; Structured data ; Sugar industry ; Sugarcane ; Support vector machines</subject><ispartof>Agronomy (Basel), 2023-04, Vol.13 (4), p.1169</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-c4bf833a59aeb313932acc1798b828e67a85f93074125a21a61427d42d7763833</citedby><cites>FETCH-LOGICAL-c418t-c4bf833a59aeb313932acc1798b828e67a85f93074125a21a61427d42d7763833</cites><orcidid>0000-0003-0140-9644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806452636/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806452636?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Bhattacharyya, Debnath</creatorcontrib><creatorcontrib>Joshua, Eali Stephen Neal</creatorcontrib><creatorcontrib>Rao, N. Thirupathi</creatorcontrib><creatorcontrib>Kim, Tai-hoon</creatorcontrib><title>Hybrid CNN-SVM Classifier Approaches to Process Semi-Structured Data in Sugarcane Yield Forecasting Production</title><title>Agronomy (Basel)</title><description>Information communication technology (ICT) breakthroughs have boosted global social and economic progress. Most rural Indians rely on agriculture for income. The growing population requires modern agricultural practices. ICT is crucial for educating farmers on how to be environmentally friendly. It helps them create more food by solving a variety of challenges. India’s sugarcane crop is popular and lucrative. Long-term crops that require water do not need specific soil. They need water; the ground should always have adequate water due to the link between cane growth and evaporation. This research focuses on forecasting soil moisture and classifying sugarcane output; sugarcane has so many applications that it must be categorized. This research examines these claims: The first phase model predicts soil moisture using two-level ensemble classifiers. Secondly, to boost performance, the proposed ensemble model integrates the Gaussian probabilistic method (GPM), the convolutional neural network (CNN), and support vector machines (SVM). The suggested approach aims to correctly anticipate future soil moisture measurements affecting crop growth and cultivation. The proposed model is 89.53% more accurate than conventional neural network classifiers. The recommended models’ outcomes will assist farmers and agricultural authorities in boosting production.</description><subject>Agricultural economics</subject><subject>Agricultural practices</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Classifiers</subject><subject>convolutional neural network</subject><subject>Crop growth</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Education</subject><subject>ensemble learning</subject><subject>Evaporation</subject><subject>Farmers</subject><subject>Fertilizers</subject><subject>Forecasting</subject><subject>Gaussian probabilistic method function</subject><subject>Information communication technology</subject><subject>Information technology</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Moisture effects</subject><subject>Neural networks</subject><subject>Probabilistic methods</subject><subject>Soil classification</subject><subject>Soil moisture</subject><subject>Soil water</subject><subject>Structured data</subject><subject>Sugar industry</subject><subject>Sugarcane</subject><subject>Support vector machines</subject><issn>2073-4395</issn><issn>2073-4395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkdtrFDEUxgdRaKl972PA56m5TS6Py2ptoa3CquBTOJPLmGU3WZOZh_3vzbpFxARywuH7fXyc03U3BN8ypvF7mEpOeX8kDHNChH7VXVIsWc-ZHl7_87_ormvd4nY0YQrLyy7dH8cSHVo_P_eb709ovYNaY4i-oNXhUDLYn76iOaMvJVtfK9r4few3c1nsvBTv0AeYAcWENssExULy6Ef0O4fucvEW6hzTdGJd08ec3nZvAuyqv36pV923u49f1_f94-dPD-vVY285UXN7x6AYg0GDHxlhmlGwlkitRkWVFxLUEDTDkhM6ACUgCKfSceqkFKyRV93D2ddl2JpDiXsoR5Mhmj-NXCYDZY525413VvhGYy8w52qAMIZRCu5oACDDyevd2auN49fi62y2eSmpxTdUYcEHKphoqtuzaoJmGlPIcwHbrmsDszn5EFt_JblssZk-AfgM2JJrLT78jUmwOW3V_L9V9hsvkpWw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Bhattacharyya, Debnath</creator><creator>Joshua, Eali Stephen Neal</creator><creator>Rao, N. Thirupathi</creator><creator>Kim, Tai-hoon</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0140-9644</orcidid></search><sort><creationdate>20230401</creationdate><title>Hybrid CNN-SVM Classifier Approaches to Process Semi-Structured Data in Sugarcane Yield Forecasting Production</title><author>Bhattacharyya, Debnath ; Joshua, Eali Stephen Neal ; Rao, N. Thirupathi ; Kim, Tai-hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-c4bf833a59aeb313932acc1798b828e67a85f93074125a21a61427d42d7763833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural economics</topic><topic>Agricultural practices</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Classifiers</topic><topic>convolutional neural network</topic><topic>Crop growth</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Education</topic><topic>ensemble learning</topic><topic>Evaporation</topic><topic>Farmers</topic><topic>Fertilizers</topic><topic>Forecasting</topic><topic>Gaussian probabilistic method function</topic><topic>Information communication technology</topic><topic>Information technology</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Moisture effects</topic><topic>Neural networks</topic><topic>Probabilistic methods</topic><topic>Soil classification</topic><topic>Soil moisture</topic><topic>Soil water</topic><topic>Structured data</topic><topic>Sugar industry</topic><topic>Sugarcane</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharyya, Debnath</creatorcontrib><creatorcontrib>Joshua, Eali Stephen Neal</creatorcontrib><creatorcontrib>Rao, N. Thirupathi</creatorcontrib><creatorcontrib>Kim, Tai-hoon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agronomy (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharyya, Debnath</au><au>Joshua, Eali Stephen Neal</au><au>Rao, N. Thirupathi</au><au>Kim, Tai-hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid CNN-SVM Classifier Approaches to Process Semi-Structured Data in Sugarcane Yield Forecasting Production</atitle><jtitle>Agronomy (Basel)</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>13</volume><issue>4</issue><spage>1169</spage><pages>1169-</pages><issn>2073-4395</issn><eissn>2073-4395</eissn><abstract>Information communication technology (ICT) breakthroughs have boosted global social and economic progress. Most rural Indians rely on agriculture for income. The growing population requires modern agricultural practices. ICT is crucial for educating farmers on how to be environmentally friendly. It helps them create more food by solving a variety of challenges. India’s sugarcane crop is popular and lucrative. Long-term crops that require water do not need specific soil. They need water; the ground should always have adequate water due to the link between cane growth and evaporation. This research focuses on forecasting soil moisture and classifying sugarcane output; sugarcane has so many applications that it must be categorized. This research examines these claims: The first phase model predicts soil moisture using two-level ensemble classifiers. Secondly, to boost performance, the proposed ensemble model integrates the Gaussian probabilistic method (GPM), the convolutional neural network (CNN), and support vector machines (SVM). The suggested approach aims to correctly anticipate future soil moisture measurements affecting crop growth and cultivation. The proposed model is 89.53% more accurate than conventional neural network classifiers. The recommended models’ outcomes will assist farmers and agricultural authorities in boosting production.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agronomy13041169</doi><orcidid>https://orcid.org/0000-0003-0140-9644</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4395
ispartof Agronomy (Basel), 2023-04, Vol.13 (4), p.1169
issn 2073-4395
2073-4395
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_edc6e4270e604485afbfb764d2faa153
source Publicly Available Content Database
subjects Agricultural economics
Agricultural practices
Agricultural production
Agriculture
Analysis
Artificial neural networks
Classifiers
convolutional neural network
Crop growth
Crop yield
Crop yields
Crops
Education
ensemble learning
Evaporation
Farmers
Fertilizers
Forecasting
Gaussian probabilistic method function
Information communication technology
Information technology
Mathematical models
Methods
Moisture effects
Neural networks
Probabilistic methods
Soil classification
Soil moisture
Soil water
Structured data
Sugar industry
Sugarcane
Support vector machines
title Hybrid CNN-SVM Classifier Approaches to Process Semi-Structured Data in Sugarcane Yield Forecasting Production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20CNN-SVM%20Classifier%20Approaches%20to%20Process%20Semi-Structured%20Data%20in%20Sugarcane%20Yield%20Forecasting%20Production&rft.jtitle=Agronomy%20(Basel)&rft.au=Bhattacharyya,%20Debnath&rft.date=2023-04-01&rft.volume=13&rft.issue=4&rft.spage=1169&rft.pages=1169-&rft.issn=2073-4395&rft.eissn=2073-4395&rft_id=info:doi/10.3390/agronomy13041169&rft_dat=%3Cgale_doaj_%3EA747307396%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-c4bf833a59aeb313932acc1798b828e67a85f93074125a21a61427d42d7763833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806452636&rft_id=info:pmid/&rft_galeid=A747307396&rfr_iscdi=true