Loading…

Apolipoprotein E ε4 allele and malondialdehyde level are independent risk factors for Alzheimer’s disease

Background: The ε4 allele of Apolipoprotein E is involved in lipid metabolism. Oxidative stress produces an increase in lipid peroxidation that has been implicated in the pathogenic cascade in Alzheimer’s disease. This study estimated the effect of the ε4 allele, malondialdehyde and lipid levels on...

Full description

Saved in:
Bibliographic Details
Published in:SAGE open medicine 2016, Vol.4, p.2050312115626731-2050312115626731
Main Authors: López-Riquelme, Natividad, Alom-Poveda, Jordi, Viciano-Morote, Nuria, Llinares-Ibor, Isabel, Tormo-Díaz, Consuelo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: The ε4 allele of Apolipoprotein E is involved in lipid metabolism. Oxidative stress produces an increase in lipid peroxidation that has been implicated in the pathogenic cascade in Alzheimer’s disease. This study estimated the effect of the ε4 allele, malondialdehyde and lipid levels on the risk for Alzheimer’s disease. Methods: A total of 41 control subjects and 73 patients with Alzheimer’s disease were recruited. The Apolipoprotein E genotype was determined by amplification of exon 4 of the Apolipoprotein E by polymerase chain reaction (PCR); malondialdehyde concentration was determined by high-pressure liquid chromatography, and serum lipids were measured by routine photometric techniques. Results: Malondialdehyde levels were significantly higher in Alzheimer’s disease patients independent of the Apolipoprotein E genotype and ε4 allele. The ε4 allele increases the risk of Alzheimer’s disease by 5.114 times and elevated malondialdehyde levels increase the risk by 9.342. Conclusion: The presence of ε4 allele and elevated malondialdehyde levels are independent risk factors for Alzheimer’s disease. These findings support the hypothesis that lipid peroxidation and ε4 allele contribute to the pathogenic cascade in Alzheimer’s disease by different pathways.
ISSN:2050-3121
2050-3121
DOI:10.1177/2050312115626731