Loading…

Inequalities of harmonic univalent functions with connections of hypergeometric functions

Let SH be the class of functions f = h+g that are harmonic univalent and sense-preserving in the open unit disk U = { z : |z| < 1} for which f (0) = f'(0)-1=0. In this paper, we introduce and study a subclass H( α, β) of the class SH and the subclass NH( α, β) with negative coefficients. We...

Full description

Saved in:
Bibliographic Details
Published in:Open mathematics (Warsaw, Poland) Poland), 2015-10, Vol.13 (1)
Main Authors: Sokół, Janusz, Ibrahim, Rabha W., Ahmad, M. Z., Al-Janaby, Hiba F.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let SH be the class of functions f = h+g that are harmonic univalent and sense-preserving in the open unit disk U = { z : |z| < 1} for which f (0) = f'(0)-1=0. In this paper, we introduce and study a subclass H( α, β) of the class SH and the subclass NH( α, β) with negative coefficients. We obtain basic results involving sufficient coefficient conditions for a function in the subclass H( α, β) and we show that these conditions are also necessary for negative coefficients, distortion bounds, extreme points, convolution and convex combinations. In this paper an attempt has also been made to discuss some results that uncover some of the connections of hypergeometric functions with a subclass of harmonic univalent functions.
ISSN:2391-5455
2391-5455
DOI:10.1515/math-2015-0066