Loading…
Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction
Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical...
Saved in:
Published in: | Nature communications 2024-06, Vol.15 (1), p.4692-13, Article 4692 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO
2
/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.
Revealing catalyst structural evolution during catalysis is critical. Here, authors reveal that a Cu-Ag oxide precursor undergoes a transformation during CO electroreduction to a composite consisting of Ag nanoparticles enveloped by thin layers of amorphous Cu, which is likely the real active phase. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-49158-4 |