Loading…
Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction
Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical...
Saved in:
Published in: | Nature communications 2024-06, Vol.15 (1), p.4692-13, Article 4692 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-4e14c3cf917d9e89ba5c1e7291db6ab1b310480e5765c559a4f515826fb706c93 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 4692 |
container_title | Nature communications |
container_volume | 15 |
creator | Wang, Di Jung, Hyun Dong Liu, Shikai Chen, Jiayi Yang, Haozhou He, Qian Xi, Shibo Back, Seoin Wang, Lei |
description | Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO
2
/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.
Revealing catalyst structural evolution during catalysis is critical. Here, authors reveal that a Cu-Ag oxide precursor undergoes a transformation during CO electroreduction to a composite consisting of Ag nanoparticles enveloped by thin layers of amorphous Cu, which is likely the real active phase. |
doi_str_mv | 10.1038/s41467-024-49158-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_efc9e86698f94db9a96e621d7d2c9208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_efc9e86698f94db9a96e621d7d2c9208</doaj_id><sourcerecordid>3062955944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-4e14c3cf917d9e89ba5c1e7291db6ab1b310480e5765c559a4f515826fb706c93</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2CBIrFhE_DjxrFXqBrxqFQJCcHacuybGY-SeLCdEfx7nE4pLQu8sWWf811f-1TVS0reUsLluwQURNcQBg0o2soGnlTnjABtaMf40wfrs-oypT0pgysqAZ5XZ1xKBpR159XwFY9oRj9v67zDOuW42LxEM9Z4DOOSfZjrMNSb5Wpb2zAdQvIZU-2WuFpwRJtjsDucvC0ea2JfDFOYw0_vsI7oCq4wXlTPBjMmvLybL6rvHz9823xubr58ut5c3TQWFMsNIAXL7aBo5xRK1ZvWUuyYoq4Xpqc9pwQkwbYTrW1bZWBoS-9MDH1HhFX8oro-cV0we32IfjLxlw7G69uNELfaxOztiBoHW0oIoeSgwPXKKIGCUdc5ZhUjsrDen1iHpZ_QWZxzeZdH0Mcns9_pbThqSikAE6wQ3twRYvixYMp68sniOJoZw5I0J4KDkC1fL_76H-k-LHEub7WqmCrNAhQVO6lsDClFHO5vQ4leY6FPsdAlFvo2Fno1vXrYx73lTwiKgJ8E6bD-Ksa_tf-D_Q1_osRg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062955944</pqid></control><display><type>article</type><title>Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Di ; Jung, Hyun Dong ; Liu, Shikai ; Chen, Jiayi ; Yang, Haozhou ; He, Qian ; Xi, Shibo ; Back, Seoin ; Wang, Lei</creator><creatorcontrib>Wang, Di ; Jung, Hyun Dong ; Liu, Shikai ; Chen, Jiayi ; Yang, Haozhou ; He, Qian ; Xi, Shibo ; Back, Seoin ; Wang, Lei</creatorcontrib><description>Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO
2
/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.
Revealing catalyst structural evolution during catalysis is critical. Here, authors reveal that a Cu-Ag oxide precursor undergoes a transformation during CO electroreduction to a composite consisting of Ag nanoparticles enveloped by thin layers of amorphous Cu, which is likely the real active phase.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-49158-4</identifier><identifier>PMID: 38824127</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 140/146 ; 140/58 ; 147/135 ; 147/143 ; 639/301/299/886 ; 639/638/77/886 ; Bimetals ; Carbon dioxide ; Carbon monoxide ; Catalysis ; Catalysts ; Copper ; Electrochemistry ; Electrolysis ; Electrowinning ; Evolution ; Humanities and Social Sciences ; Labeling ; multidisciplinary ; Nanoparticles ; Precursors ; Science ; Science (multidisciplinary) ; Silver ; Thin films</subject><ispartof>Nature communications, 2024-06, Vol.15 (1), p.4692-13, Article 4692</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-4e14c3cf917d9e89ba5c1e7291db6ab1b310480e5765c559a4f515826fb706c93</cites><orcidid>0000-0002-1931-7767 ; 0000-0002-9649-5479 ; 0000-0003-4891-3581 ; 0000-0002-8426-0541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3062955944/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3062955944?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25728,27898,27899,36986,36987,44563,53763,53765,75093</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38824127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Jung, Hyun Dong</creatorcontrib><creatorcontrib>Liu, Shikai</creatorcontrib><creatorcontrib>Chen, Jiayi</creatorcontrib><creatorcontrib>Yang, Haozhou</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Back, Seoin</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO
2
/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.
Revealing catalyst structural evolution during catalysis is critical. Here, authors reveal that a Cu-Ag oxide precursor undergoes a transformation during CO electroreduction to a composite consisting of Ag nanoparticles enveloped by thin layers of amorphous Cu, which is likely the real active phase.</description><subject>140/131</subject><subject>140/146</subject><subject>140/58</subject><subject>147/135</subject><subject>147/143</subject><subject>639/301/299/886</subject><subject>639/638/77/886</subject><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Copper</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electrowinning</subject><subject>Evolution</subject><subject>Humanities and Social Sciences</subject><subject>Labeling</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Precursors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silver</subject><subject>Thin films</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2CBIrFhE_DjxrFXqBrxqFQJCcHacuybGY-SeLCdEfx7nE4pLQu8sWWf811f-1TVS0reUsLluwQURNcQBg0o2soGnlTnjABtaMf40wfrs-oypT0pgysqAZ5XZ1xKBpR159XwFY9oRj9v67zDOuW42LxEM9Z4DOOSfZjrMNSb5Wpb2zAdQvIZU-2WuFpwRJtjsDucvC0ea2JfDFOYw0_vsI7oCq4wXlTPBjMmvLybL6rvHz9823xubr58ut5c3TQWFMsNIAXL7aBo5xRK1ZvWUuyYoq4Xpqc9pwQkwbYTrW1bZWBoS-9MDH1HhFX8oro-cV0we32IfjLxlw7G69uNELfaxOztiBoHW0oIoeSgwPXKKIGCUdc5ZhUjsrDen1iHpZ_QWZxzeZdH0Mcns9_pbThqSikAE6wQ3twRYvixYMp68sniOJoZw5I0J4KDkC1fL_76H-k-LHEub7WqmCrNAhQVO6lsDClFHO5vQ4leY6FPsdAlFvo2Fno1vXrYx73lTwiKgJ8E6bD-Ksa_tf-D_Q1_osRg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wang, Di</creator><creator>Jung, Hyun Dong</creator><creator>Liu, Shikai</creator><creator>Chen, Jiayi</creator><creator>Yang, Haozhou</creator><creator>He, Qian</creator><creator>Xi, Shibo</creator><creator>Back, Seoin</creator><creator>Wang, Lei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1931-7767</orcidid><orcidid>https://orcid.org/0000-0002-9649-5479</orcidid><orcidid>https://orcid.org/0000-0003-4891-3581</orcidid><orcidid>https://orcid.org/0000-0002-8426-0541</orcidid></search><sort><creationdate>20240601</creationdate><title>Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction</title><author>Wang, Di ; Jung, Hyun Dong ; Liu, Shikai ; Chen, Jiayi ; Yang, Haozhou ; He, Qian ; Xi, Shibo ; Back, Seoin ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-4e14c3cf917d9e89ba5c1e7291db6ab1b310480e5765c559a4f515826fb706c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/131</topic><topic>140/146</topic><topic>140/58</topic><topic>147/135</topic><topic>147/143</topic><topic>639/301/299/886</topic><topic>639/638/77/886</topic><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Copper</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electrowinning</topic><topic>Evolution</topic><topic>Humanities and Social Sciences</topic><topic>Labeling</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Precursors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silver</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Jung, Hyun Dong</creatorcontrib><creatorcontrib>Liu, Shikai</creatorcontrib><creatorcontrib>Chen, Jiayi</creatorcontrib><creatorcontrib>Yang, Haozhou</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Back, Seoin</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Di</au><au>Jung, Hyun Dong</au><au>Liu, Shikai</au><au>Chen, Jiayi</au><au>Yang, Haozhou</au><au>He, Qian</au><au>Xi, Shibo</au><au>Back, Seoin</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>4692</spage><epage>13</epage><pages>4692-13</pages><artnum>4692</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO
2
/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.
Revealing catalyst structural evolution during catalysis is critical. Here, authors reveal that a Cu-Ag oxide precursor undergoes a transformation during CO electroreduction to a composite consisting of Ag nanoparticles enveloped by thin layers of amorphous Cu, which is likely the real active phase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38824127</pmid><doi>10.1038/s41467-024-49158-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1931-7767</orcidid><orcidid>https://orcid.org/0000-0002-9649-5479</orcidid><orcidid>https://orcid.org/0000-0003-4891-3581</orcidid><orcidid>https://orcid.org/0000-0002-8426-0541</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-06, Vol.15 (1), p.4692-13, Article 4692 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_efc9e86698f94db9a96e621d7d2c9208 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/131 140/146 140/58 147/135 147/143 639/301/299/886 639/638/77/886 Bimetals Carbon dioxide Carbon monoxide Catalysis Catalysts Copper Electrochemistry Electrolysis Electrowinning Evolution Humanities and Social Sciences Labeling multidisciplinary Nanoparticles Precursors Science Science (multidisciplinary) Silver Thin films |
title | Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T23%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20structural%20evolution%20of%20CuAg%20composites%20during%20electrochemical%20carbon%20monoxide%20reduction&rft.jtitle=Nature%20communications&rft.au=Wang,%20Di&rft.date=2024-06-01&rft.volume=15&rft.issue=1&rft.spage=4692&rft.epage=13&rft.pages=4692-13&rft.artnum=4692&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-49158-4&rft_dat=%3Cproquest_doaj_%3E3062955944%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-4e14c3cf917d9e89ba5c1e7291db6ab1b310480e5765c559a4f515826fb706c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062955944&rft_id=info:pmid/38824127&rfr_iscdi=true |