Loading…

Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction

Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-06, Vol.15 (1), p.4692-13, Article 4692
Main Authors: Wang, Di, Jung, Hyun Dong, Liu, Shikai, Chen, Jiayi, Yang, Haozhou, He, Qian, Xi, Shibo, Back, Seoin, Wang, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c492t-4e14c3cf917d9e89ba5c1e7291db6ab1b310480e5765c559a4f515826fb706c93
container_end_page 13
container_issue 1
container_start_page 4692
container_title Nature communications
container_volume 15
creator Wang, Di
Jung, Hyun Dong
Liu, Shikai
Chen, Jiayi
Yang, Haozhou
He, Qian
Xi, Shibo
Back, Seoin
Wang, Lei
description Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO 2 /CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance. Revealing catalyst structural evolution during catalysis is critical. Here, authors reveal that a Cu-Ag oxide precursor undergoes a transformation during CO electroreduction to a composite consisting of Ag nanoparticles enveloped by thin layers of amorphous Cu, which is likely the real active phase.
doi_str_mv 10.1038/s41467-024-49158-4
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_efc9e86698f94db9a96e621d7d2c9208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_efc9e86698f94db9a96e621d7d2c9208</doaj_id><sourcerecordid>3062955944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-4e14c3cf917d9e89ba5c1e7291db6ab1b310480e5765c559a4f515826fb706c93</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2CBIrFhE_DjxrFXqBrxqFQJCcHacuybGY-SeLCdEfx7nE4pLQu8sWWf811f-1TVS0reUsLluwQURNcQBg0o2soGnlTnjABtaMf40wfrs-oypT0pgysqAZ5XZ1xKBpR159XwFY9oRj9v67zDOuW42LxEM9Z4DOOSfZjrMNSb5Wpb2zAdQvIZU-2WuFpwRJtjsDucvC0ea2JfDFOYw0_vsI7oCq4wXlTPBjMmvLybL6rvHz9823xubr58ut5c3TQWFMsNIAXL7aBo5xRK1ZvWUuyYoq4Xpqc9pwQkwbYTrW1bZWBoS-9MDH1HhFX8oro-cV0we32IfjLxlw7G69uNELfaxOztiBoHW0oIoeSgwPXKKIGCUdc5ZhUjsrDen1iHpZ_QWZxzeZdH0Mcns9_pbThqSikAE6wQ3twRYvixYMp68sniOJoZw5I0J4KDkC1fL_76H-k-LHEub7WqmCrNAhQVO6lsDClFHO5vQ4leY6FPsdAlFvo2Fno1vXrYx73lTwiKgJ8E6bD-Ksa_tf-D_Q1_osRg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062955944</pqid></control><display><type>article</type><title>Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wang, Di ; Jung, Hyun Dong ; Liu, Shikai ; Chen, Jiayi ; Yang, Haozhou ; He, Qian ; Xi, Shibo ; Back, Seoin ; Wang, Lei</creator><creatorcontrib>Wang, Di ; Jung, Hyun Dong ; Liu, Shikai ; Chen, Jiayi ; Yang, Haozhou ; He, Qian ; Xi, Shibo ; Back, Seoin ; Wang, Lei</creatorcontrib><description>Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO 2 /CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance. Revealing catalyst structural evolution during catalysis is critical. Here, authors reveal that a Cu-Ag oxide precursor undergoes a transformation during CO electroreduction to a composite consisting of Ag nanoparticles enveloped by thin layers of amorphous Cu, which is likely the real active phase.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-49158-4</identifier><identifier>PMID: 38824127</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 140/146 ; 140/58 ; 147/135 ; 147/143 ; 639/301/299/886 ; 639/638/77/886 ; Bimetals ; Carbon dioxide ; Carbon monoxide ; Catalysis ; Catalysts ; Copper ; Electrochemistry ; Electrolysis ; Electrowinning ; Evolution ; Humanities and Social Sciences ; Labeling ; multidisciplinary ; Nanoparticles ; Precursors ; Science ; Science (multidisciplinary) ; Silver ; Thin films</subject><ispartof>Nature communications, 2024-06, Vol.15 (1), p.4692-13, Article 4692</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-4e14c3cf917d9e89ba5c1e7291db6ab1b310480e5765c559a4f515826fb706c93</cites><orcidid>0000-0002-1931-7767 ; 0000-0002-9649-5479 ; 0000-0003-4891-3581 ; 0000-0002-8426-0541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3062955944/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3062955944?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25728,27898,27899,36986,36987,44563,53763,53765,75093</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38824127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Jung, Hyun Dong</creatorcontrib><creatorcontrib>Liu, Shikai</creatorcontrib><creatorcontrib>Chen, Jiayi</creatorcontrib><creatorcontrib>Yang, Haozhou</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Back, Seoin</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO 2 /CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance. Revealing catalyst structural evolution during catalysis is critical. Here, authors reveal that a Cu-Ag oxide precursor undergoes a transformation during CO electroreduction to a composite consisting of Ag nanoparticles enveloped by thin layers of amorphous Cu, which is likely the real active phase.</description><subject>140/131</subject><subject>140/146</subject><subject>140/58</subject><subject>147/135</subject><subject>147/143</subject><subject>639/301/299/886</subject><subject>639/638/77/886</subject><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Copper</subject><subject>Electrochemistry</subject><subject>Electrolysis</subject><subject>Electrowinning</subject><subject>Evolution</subject><subject>Humanities and Social Sciences</subject><subject>Labeling</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Precursors</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Silver</subject><subject>Thin films</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2CBIrFhE_DjxrFXqBrxqFQJCcHacuybGY-SeLCdEfx7nE4pLQu8sWWf811f-1TVS0reUsLluwQURNcQBg0o2soGnlTnjABtaMf40wfrs-oypT0pgysqAZ5XZ1xKBpR159XwFY9oRj9v67zDOuW42LxEM9Z4DOOSfZjrMNSb5Wpb2zAdQvIZU-2WuFpwRJtjsDucvC0ea2JfDFOYw0_vsI7oCq4wXlTPBjMmvLybL6rvHz9823xubr58ut5c3TQWFMsNIAXL7aBo5xRK1ZvWUuyYoq4Xpqc9pwQkwbYTrW1bZWBoS-9MDH1HhFX8oro-cV0we32IfjLxlw7G69uNELfaxOztiBoHW0oIoeSgwPXKKIGCUdc5ZhUjsrDen1iHpZ_QWZxzeZdH0Mcns9_pbThqSikAE6wQ3twRYvixYMp68sniOJoZw5I0J4KDkC1fL_76H-k-LHEub7WqmCrNAhQVO6lsDClFHO5vQ4leY6FPsdAlFvo2Fno1vXrYx73lTwiKgJ8E6bD-Ksa_tf-D_Q1_osRg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wang, Di</creator><creator>Jung, Hyun Dong</creator><creator>Liu, Shikai</creator><creator>Chen, Jiayi</creator><creator>Yang, Haozhou</creator><creator>He, Qian</creator><creator>Xi, Shibo</creator><creator>Back, Seoin</creator><creator>Wang, Lei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1931-7767</orcidid><orcidid>https://orcid.org/0000-0002-9649-5479</orcidid><orcidid>https://orcid.org/0000-0003-4891-3581</orcidid><orcidid>https://orcid.org/0000-0002-8426-0541</orcidid></search><sort><creationdate>20240601</creationdate><title>Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction</title><author>Wang, Di ; Jung, Hyun Dong ; Liu, Shikai ; Chen, Jiayi ; Yang, Haozhou ; He, Qian ; Xi, Shibo ; Back, Seoin ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-4e14c3cf917d9e89ba5c1e7291db6ab1b310480e5765c559a4f515826fb706c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/131</topic><topic>140/146</topic><topic>140/58</topic><topic>147/135</topic><topic>147/143</topic><topic>639/301/299/886</topic><topic>639/638/77/886</topic><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Copper</topic><topic>Electrochemistry</topic><topic>Electrolysis</topic><topic>Electrowinning</topic><topic>Evolution</topic><topic>Humanities and Social Sciences</topic><topic>Labeling</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Precursors</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Silver</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Di</creatorcontrib><creatorcontrib>Jung, Hyun Dong</creatorcontrib><creatorcontrib>Liu, Shikai</creatorcontrib><creatorcontrib>Chen, Jiayi</creatorcontrib><creatorcontrib>Yang, Haozhou</creatorcontrib><creatorcontrib>He, Qian</creatorcontrib><creatorcontrib>Xi, Shibo</creatorcontrib><creatorcontrib>Back, Seoin</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Di</au><au>Jung, Hyun Dong</au><au>Liu, Shikai</au><au>Chen, Jiayi</au><au>Yang, Haozhou</au><au>He, Qian</au><au>Xi, Shibo</au><au>Back, Seoin</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>4692</spage><epage>13</epage><pages>4692-13</pages><artnum>4692</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO 2 /CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance. Revealing catalyst structural evolution during catalysis is critical. Here, authors reveal that a Cu-Ag oxide precursor undergoes a transformation during CO electroreduction to a composite consisting of Ag nanoparticles enveloped by thin layers of amorphous Cu, which is likely the real active phase.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38824127</pmid><doi>10.1038/s41467-024-49158-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1931-7767</orcidid><orcidid>https://orcid.org/0000-0002-9649-5479</orcidid><orcidid>https://orcid.org/0000-0003-4891-3581</orcidid><orcidid>https://orcid.org/0000-0002-8426-0541</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-06, Vol.15 (1), p.4692-13, Article 4692
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_efc9e86698f94db9a96e621d7d2c9208
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/131
140/146
140/58
147/135
147/143
639/301/299/886
639/638/77/886
Bimetals
Carbon dioxide
Carbon monoxide
Catalysis
Catalysts
Copper
Electrochemistry
Electrolysis
Electrowinning
Evolution
Humanities and Social Sciences
Labeling
multidisciplinary
Nanoparticles
Precursors
Science
Science (multidisciplinary)
Silver
Thin films
title Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T23%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20structural%20evolution%20of%20CuAg%20composites%20during%20electrochemical%20carbon%20monoxide%20reduction&rft.jtitle=Nature%20communications&rft.au=Wang,%20Di&rft.date=2024-06-01&rft.volume=15&rft.issue=1&rft.spage=4692&rft.epage=13&rft.pages=4692-13&rft.artnum=4692&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-49158-4&rft_dat=%3Cproquest_doaj_%3E3062955944%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-4e14c3cf917d9e89ba5c1e7291db6ab1b310480e5765c559a4f515826fb706c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062955944&rft_id=info:pmid/38824127&rfr_iscdi=true