Loading…
Descents of $\lambda$-unimodal cyclic permutations
We prove an identity conjectured by Adin and Roichman involving the descent set of $\lambda$-unimodal cyclic permutations. These permutations appear in the character formulas for certain representations of the symmetric group and these formulas are usually proven algebraically. Here, we give a combi...
Saved in:
Published in: | Discrete mathematics and theoretical computer science 2014-01, Vol.DMTCS Proceedings vol. AT,... (Proceedings), p.417-428 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove an identity conjectured by Adin and Roichman involving the descent set of $\lambda$-unimodal cyclic permutations. These permutations appear in the character formulas for certain representations of the symmetric group and these formulas are usually proven algebraically. Here, we give a combinatorial proof for one such formula and discuss the consequences for the distribution of the descent set on cyclic permutations.
Nous prouvons une identité conjecturée par Adin et Roichman impliquant les ensembles des descentes des permutations cycliques $\lambda$-unimodales. Ces permutations apparaissent dans les formules des caractères pour certaines représentations du groupe symétrique, et ces formules sont généralement prouvées dans une manière algébrique. Ici, nous donnons une preuve combinatoire pour une telle formule et discutons les conséquences pour la distribution de l’ensemble des descentes sur des permutations cycliques. |
---|---|
ISSN: | 1365-8050 1462-7264 1365-8050 |
DOI: | 10.46298/dmtcs.2411 |