Loading…

Descents of $\lambda$-unimodal cyclic permutations

We prove an identity conjectured by Adin and Roichman involving the descent set of $\lambda$-unimodal cyclic permutations. These permutations appear in the character formulas for certain representations of the symmetric group and these formulas are usually proven algebraically. Here, we give a combi...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics and theoretical computer science 2014-01, Vol.DMTCS Proceedings vol. AT,... (Proceedings), p.417-428
Main Author: Archer, Kassie
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 428
container_issue Proceedings
container_start_page 417
container_title Discrete mathematics and theoretical computer science
container_volume DMTCS Proceedings vol. AT,...
creator Archer, Kassie
description We prove an identity conjectured by Adin and Roichman involving the descent set of $\lambda$-unimodal cyclic permutations. These permutations appear in the character formulas for certain representations of the symmetric group and these formulas are usually proven algebraically. Here, we give a combinatorial proof for one such formula and discuss the consequences for the distribution of the descent set on cyclic permutations. Nous prouvons une identité conjecturée par Adin et Roichman impliquant les ensembles des descentes des permutations cycliques $\lambda$-unimodales. Ces permutations apparaissent dans les formules des caractères pour certaines représentations du groupe symétrique, et ces formules sont généralement prouvées dans une manière algébrique. Ici, nous donnons une preuve combinatoire pour une telle formule et discutons les conséquences pour la distribution de l’ensemble des descentes sur des permutations cycliques.
doi_str_mv 10.46298/dmtcs.2411
format article
fullrecord <record><control><sourceid>hal_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f0faef00a8134169952174ee863a5fdb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f0faef00a8134169952174ee863a5fdb</doaj_id><sourcerecordid>oai_HAL_hal_01207601v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1361-b2bbff643a4d990e0ff5ae26e8e933f54d54215598466ac664cb252f95dc01513</originalsourceid><addsrcrecordid>eNpVkMtKA0EQRRtRMEZX_sAsshGZWP3M9DLER4SAG90JTU0_dMJMOnRPhPy9eYjoqopL1blwCLmmMBaK6erOdb3NYyYoPSEDypUsK5Bw-mc_Jxc5LwEo02IyIOzeZ-tXfS5iKEbvLXa1w1G5WTVddNgWdmvbxhZrn7pNj30TV_mSnAVss7_6mUPy9vjwOpuXi5en59l0UdpdGS1rVtchKMFROK3BQwgSPVO-8przIIWTglEpdSWUQquUsDWTLGjpLFBJ-ZA8H7ku4tKsU9Nh2pqIjTkEMX0YTH1jW28CBPQBACvKBVVaS0YnwvtKcZTB1TvWzZH1ie0_1Hy6MPts5wMmCujXvvf2eGtTzDn58PtAwRw0m4Nms9fMvwFXMG6B</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Descents of $\lambda$-unimodal cyclic permutations</title><source>Publicly Available Content Database</source><creator>Archer, Kassie</creator><creatorcontrib>Archer, Kassie</creatorcontrib><description>We prove an identity conjectured by Adin and Roichman involving the descent set of $\lambda$-unimodal cyclic permutations. These permutations appear in the character formulas for certain representations of the symmetric group and these formulas are usually proven algebraically. Here, we give a combinatorial proof for one such formula and discuss the consequences for the distribution of the descent set on cyclic permutations. Nous prouvons une identité conjecturée par Adin et Roichman impliquant les ensembles des descentes des permutations cycliques $\lambda$-unimodales. Ces permutations apparaissent dans les formules des caractères pour certaines représentations du groupe symétrique, et ces formules sont généralement prouvées dans une manière algébrique. Ici, nous donnons une preuve combinatoire pour une telle formule et discutons les conséquences pour la distribution de l’ensemble des descentes sur des permutations cycliques.</description><identifier>ISSN: 1365-8050</identifier><identifier>ISSN: 1462-7264</identifier><identifier>EISSN: 1365-8050</identifier><identifier>DOI: 10.46298/dmtcs.2411</identifier><language>eng</language><publisher>DMTCS</publisher><subject>[info.info-dm] computer science [cs]/discrete mathematics [cs.dm] ; [math.math-co] mathematics [math]/combinatorics [math.co] ; characters of representations of the symmetric group ; Combinatorics ; Computer Science ; cyclic permutation ; descent ; Discrete Mathematics ; Mathematics ; necklaces</subject><ispartof>Discrete mathematics and theoretical computer science, 2014-01, Vol.DMTCS Proceedings vol. AT,... (Proceedings), p.417-428</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01207601$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Archer, Kassie</creatorcontrib><title>Descents of $\lambda$-unimodal cyclic permutations</title><title>Discrete mathematics and theoretical computer science</title><description>We prove an identity conjectured by Adin and Roichman involving the descent set of $\lambda$-unimodal cyclic permutations. These permutations appear in the character formulas for certain representations of the symmetric group and these formulas are usually proven algebraically. Here, we give a combinatorial proof for one such formula and discuss the consequences for the distribution of the descent set on cyclic permutations. Nous prouvons une identité conjecturée par Adin et Roichman impliquant les ensembles des descentes des permutations cycliques $\lambda$-unimodales. Ces permutations apparaissent dans les formules des caractères pour certaines représentations du groupe symétrique, et ces formules sont généralement prouvées dans une manière algébrique. Ici, nous donnons une preuve combinatoire pour une telle formule et discutons les conséquences pour la distribution de l’ensemble des descentes sur des permutations cycliques.</description><subject>[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]</subject><subject>[math.math-co] mathematics [math]/combinatorics [math.co]</subject><subject>characters of representations of the symmetric group</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>cyclic permutation</subject><subject>descent</subject><subject>Discrete Mathematics</subject><subject>Mathematics</subject><subject>necklaces</subject><issn>1365-8050</issn><issn>1462-7264</issn><issn>1365-8050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkMtKA0EQRRtRMEZX_sAsshGZWP3M9DLER4SAG90JTU0_dMJMOnRPhPy9eYjoqopL1blwCLmmMBaK6erOdb3NYyYoPSEDypUsK5Bw-mc_Jxc5LwEo02IyIOzeZ-tXfS5iKEbvLXa1w1G5WTVddNgWdmvbxhZrn7pNj30TV_mSnAVss7_6mUPy9vjwOpuXi5en59l0UdpdGS1rVtchKMFROK3BQwgSPVO-8przIIWTglEpdSWUQquUsDWTLGjpLFBJ-ZA8H7ku4tKsU9Nh2pqIjTkEMX0YTH1jW28CBPQBACvKBVVaS0YnwvtKcZTB1TvWzZH1ie0_1Hy6MPts5wMmCujXvvf2eGtTzDn58PtAwRw0m4Nms9fMvwFXMG6B</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Archer, Kassie</creator><general>DMTCS</general><general>Discrete Mathematics and Theoretical Computer Science</general><general>Discrete Mathematics &amp; Theoretical Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Descents of $\lambda$-unimodal cyclic permutations</title><author>Archer, Kassie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1361-b2bbff643a4d990e0ff5ae26e8e933f54d54215598466ac664cb252f95dc01513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]</topic><topic>[math.math-co] mathematics [math]/combinatorics [math.co]</topic><topic>characters of representations of the symmetric group</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>cyclic permutation</topic><topic>descent</topic><topic>Discrete Mathematics</topic><topic>Mathematics</topic><topic>necklaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Archer, Kassie</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Discrete mathematics and theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Archer, Kassie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Descents of $\lambda$-unimodal cyclic permutations</atitle><jtitle>Discrete mathematics and theoretical computer science</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>DMTCS Proceedings vol. AT,...</volume><issue>Proceedings</issue><spage>417</spage><epage>428</epage><pages>417-428</pages><issn>1365-8050</issn><issn>1462-7264</issn><eissn>1365-8050</eissn><abstract>We prove an identity conjectured by Adin and Roichman involving the descent set of $\lambda$-unimodal cyclic permutations. These permutations appear in the character formulas for certain representations of the symmetric group and these formulas are usually proven algebraically. Here, we give a combinatorial proof for one such formula and discuss the consequences for the distribution of the descent set on cyclic permutations. Nous prouvons une identité conjecturée par Adin et Roichman impliquant les ensembles des descentes des permutations cycliques $\lambda$-unimodales. Ces permutations apparaissent dans les formules des caractères pour certaines représentations du groupe symétrique, et ces formules sont généralement prouvées dans une manière algébrique. Ici, nous donnons une preuve combinatoire pour une telle formule et discutons les conséquences pour la distribution de l’ensemble des descentes sur des permutations cycliques.</abstract><pub>DMTCS</pub><doi>10.46298/dmtcs.2411</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1365-8050
ispartof Discrete mathematics and theoretical computer science, 2014-01, Vol.DMTCS Proceedings vol. AT,... (Proceedings), p.417-428
issn 1365-8050
1462-7264
1365-8050
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f0faef00a8134169952174ee863a5fdb
source Publicly Available Content Database
subjects [info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
[math.math-co] mathematics [math]/combinatorics [math.co]
characters of representations of the symmetric group
Combinatorics
Computer Science
cyclic permutation
descent
Discrete Mathematics
Mathematics
necklaces
title Descents of $\lambda$-unimodal cyclic permutations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Descents%20of%20$%5Clambda$-unimodal%20cyclic%20permutations&rft.jtitle=Discrete%20mathematics%20and%20theoretical%20computer%20science&rft.au=Archer,%20Kassie&rft.date=2014-01-01&rft.volume=DMTCS%20Proceedings%20vol.%20AT,...&rft.issue=Proceedings&rft.spage=417&rft.epage=428&rft.pages=417-428&rft.issn=1365-8050&rft.eissn=1365-8050&rft_id=info:doi/10.46298/dmtcs.2411&rft_dat=%3Chal_doaj_%3Eoai_HAL_hal_01207601v1%3C/hal_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1361-b2bbff643a4d990e0ff5ae26e8e933f54d54215598466ac664cb252f95dc01513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true