Loading…
Tribonacci graphs
Special numbers have very important mathematical properties alongside their numerous applications in many fields of science. Probably the most important of those is the Fibonacci numbers. In this paper, we use a generalization of Fibonacci numbers called tribonacci numbers having very limited propert...
Saved in:
Published in: | ITM web of conferences 2020, Vol.34, p.1002 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Special numbers have very important mathematical properties alongside their numerous applications in many fields of science. Probably the most important of those is the Fibonacci numbers. In this paper, we use a generalization of Fibonacci numbers called tribonacci numbers having very limited properties and relations compared to Fibonacci numbers. There is almost no result on the connections between these numbers and graphs. A graph having a degree sequence consisting of
t
successive tribonacci numbers is called a tribonacci graph of order
t
. Recently, a new graph parameter named as omega invariant has been introduced and shown to be very informative in obtaining combinatorial and topological properties of graphs. It is useful for graphs having the same degree sequence and gives some common properties of the realizations of this degree sequence together with some properties especially connectedness and cyclicness of all realizations. In this work, we determined all the tribonacci graphs of any order by means of some combinatorial results. Those results should be useful in networks with large degree sequences and cryptographic applications with special numbers. |
---|---|
ISSN: | 2271-2097 2431-7578 2271-2097 |
DOI: | 10.1051/itmconf/20203401002 |