Loading…
Discrete Robustness Optimization on Emergency Transportation Network Based on Prospect Theory
This paper focuses on the discrete robustness optimization of emergency transportation network with the consideration of timeliness and decision behavior of decision-maker under the limited rationality. Based on a situation that the nearer to disaster area, the higher probability of time delay, pros...
Saved in:
Published in: | Journal of advanced transportation 2019-01, Vol.2019 (2019), p.1-18 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper focuses on the discrete robustness optimization of emergency transportation network with the consideration of timeliness and decision behavior of decision-maker under the limited rationality. Based on a situation that the nearer to disaster area, the higher probability of time delay, prospect theory is specially introduced to reflect the subjective decision behavior of decision-maker. Then, a discrete robustness optimization model is proposed with the purpose of the better timeliness and robustness. The model is based on the emergency transportation network with multistorage centers and multidisaster points. In order to obtain the optimal solution, an improved genetic algorithm is designed by introducing a bidirectional search strategy based on a newfangled path cluster to obtain specific paths that connect each storage centers and each disaster points. Finally, a case study is exhibited to demonstrate the reasonability of the model, theory, and algorithm. The result shows that the path cluster with the better timeliness and robustness can be well obtained by using the prospect theory and improved genetic algorithm. The analysis especially reveals that the robustness is correspondent to the risk aversion in prospect theory. |
---|---|
ISSN: | 0197-6729 2042-3195 |
DOI: | 10.1155/2019/2728073 |