Loading…
A Deep Reinforcement Learning Design for Virtual Synchronous Generators Accommodating Modular Multilevel Converters
The deep reinforcement learning (DRL) technique has gained attention for its potential in designing “virtual network” controllers. This skill utilizes a novel solution that can avoid the specific parameters and system model required in classical dynamic programming algorithms. However, addressing th...
Saved in:
Published in: | Applied sciences 2023-05, Vol.13 (10), p.5879 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The deep reinforcement learning (DRL) technique has gained attention for its potential in designing “virtual network” controllers. This skill utilizes a novel solution that can avoid the specific parameters and system model required in classical dynamic programming algorithms. However, addressing the issue of system uncertainties and performance deterioration remains a challenge. To overcome this challenge, the authors propose a new control prototype using a twin delayed deep deterministic policy gradient (TD3)-based adaptive controller, which replaces the conventional virtual synchronous generator (VSG) module in the modular multilevel converter (MMC) control. In this approach, an adaptive programming module is developed using a critic fuzzy network point of view to determine the optimal control policy. The modification presented in this framework is able to improve the system stability and resist disruptions while retaining the merits of the conventional VSG control model. The proposed approach is implemented and tested using the DRL toolbox in MATLAB/Simulink. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13105879 |