Loading…
Highly symmetric aperiodic structures -INVITED
The symmetries of periodic structures are severely constrained by the crystallographic restriction. In particular, in two and three spatial dimensions, only rotational axes of order 1, 2, 3, 4 or 6 are possible. Aperiodic tilings can provide perfectly ordered structures with arbitrary symmetry prope...
Saved in:
Published in: | EPJ Web of conferences 2021, Vol.255, p.9001 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The symmetries of periodic structures are severely constrained by the crystallographic restriction. In particular, in two and three spatial dimensions, only rotational axes of order 1, 2, 3, 4 or 6 are possible. Aperiodic tilings can provide perfectly ordered structures with arbitrary symmetry properties. Random tilings can retain part of the aperiodic order as well the rotational symmetry. They offer a more flexible approach to obtain homogeneous structures with high rotational symmetry, and might be of particular interest for applications. Some key examples and their diffraction are discussed. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/202125509001 |