Loading…

结合Attention U-Net与瓶颈检测的肺部细胞图像分割方法

肺部病理图像具有边界模糊、细胞重叠交织等特点,为了解决细胞分割问题,提出结合Attention U-Net与瓶颈检测的肺部细胞图像分割方法。首先对采集到的图像进行双边滤波和拉普拉斯锐化处理,在去除噪声的同时突出细胞边缘细节,加大目标物与背景的对比;然后对Attention U-Net进行训练,利用训练的模型对病理图像进行分割,得到细胞区域;在模型分割结果的基础上,以面积、周长、圆度为筛选条件建立判别模型,区分单个细胞和重叠细胞;对细胞重叠区域采用瓶颈检测方法确定分离点,采用椭圆拟合方法进行边界修正,得到最终分割结果。实验结果表明,该方法能够对复杂的肺部细胞病理图像进行分割(包括单个细胞与重叠细...

Full description

Saved in:
Bibliographic Details
Published in:智能科学与技术学报 2022-12, Vol.4 (4), p.610-616
Main Authors: 邵虹, 左常升, 张萍
Format: Article
Language:Chinese
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:肺部病理图像具有边界模糊、细胞重叠交织等特点,为了解决细胞分割问题,提出结合Attention U-Net与瓶颈检测的肺部细胞图像分割方法。首先对采集到的图像进行双边滤波和拉普拉斯锐化处理,在去除噪声的同时突出细胞边缘细节,加大目标物与背景的对比;然后对Attention U-Net进行训练,利用训练的模型对病理图像进行分割,得到细胞区域;在模型分割结果的基础上,以面积、周长、圆度为筛选条件建立判别模型,区分单个细胞和重叠细胞;对细胞重叠区域采用瓶颈检测方法确定分离点,采用椭圆拟合方法进行边界修正,得到最终分割结果。实验结果表明,该方法能够对复杂的肺部细胞病理图像进行分割(包括单个细胞与重叠细胞),取得了较好的分割结果。
ISSN:2096-6652