Loading…
Impact of Target Surface Building Direction on the Heat Transfer Characteristics of Additive Manufactured Impingement Systems
Additive manufacturing (AM) is widely recognized as a prominent tool to maximize the potential of internal cooling systems for gas turbine applications. Several past studies have been undertaken in order to assess the effect of additive manufactured components peculiar characteristics, mainly in the...
Saved in:
Published in: | Aerospace 2024-11, Vol.11 (11), p.944 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Additive manufacturing (AM) is widely recognized as a prominent tool to maximize the potential of internal cooling systems for gas turbine applications. Several past studies have been undertaken in order to assess the effect of additive manufactured components peculiar characteristics, mainly in the form of surface roughness, on heat transfer and pressure losses. On the other hand, impingement constitutes one of the most adopted solutions for turbine vane internal cooling; also, its heat transfer performance has been shown to be potentially improved through the use of roughened target surfaces in several studies. In this work, the effect of AM-generated roughness on the performance of impingement systems has been experimentally investigated. A lumped approach was used to test additive manufactured coupons reproducing an impingement array in 1:1 scale and retrieve an average heat transfer assessment. The Laser Powder Bed Fusion (L-PBF) technique was used for the manufacturing process. As one of the main parameters affecting AM-generated roughness, the building direction of the target surface was varied in order to highlight its impact on the overall performance comparing four different building directions with a smooth reference target plate made by standard CNC machining. |
---|---|
ISSN: | 2226-4310 2226-4310 |
DOI: | 10.3390/aerospace11110944 |