Loading…

C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens

Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis...

Full description

Saved in:
Bibliographic Details
Published in:Communications biology 2022-06, Vol.5 (1), p.643-643, Article 643
Main Authors: Ju, Shouyong, Chen, Hanqiao, Wang, Shaoying, Lin, Jian, Ma, Yanli, Aroian, Raffi V., Peng, Donghai, Sun, Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-1c87af6e96724bdd0f80a4aa927bfc791399145fa949e600fe0e8e59c946b0083
cites cdi_FETCH-LOGICAL-c540t-1c87af6e96724bdd0f80a4aa927bfc791399145fa949e600fe0e8e59c946b0083
container_end_page 643
container_issue 1
container_start_page 643
container_title Communications biology
container_volume 5
creator Ju, Shouyong
Chen, Hanqiao
Wang, Shaoying
Lin, Jian
Ma, Yanli
Aroian, Raffi V.
Peng, Donghai
Sun, Ming
description Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis - Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens. Bacillus thuringiensis toxin Cry5Ba triggers potassium ion leakage, causing mitochondrial damage and energy imbalance. C. elegans can monitor this intracellular energy imbalance via AMP-activated protein kinase to trigger innate immune responses.
doi_str_mv 10.1038/s42003-022-03589-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f3e1668384af474d978f2f4d5ca17b17</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f3e1668384af474d978f2f4d5ca17b17</doaj_id><sourcerecordid>2682592512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-1c87af6e96724bdd0f80a4aa927bfc791399145fa949e600fe0e8e59c946b0083</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAltiwSfFfnHiDVI2grSiCBaytm-Qm41FiD7ZTNG-PZ6aUlgXe2PI957OvfYriNaMXjIrmfZScUlFSzksqqkaX7FlxyoXWpVCSP3-0PinOY9xQSpnWWgn5sjgRVV2LPE6LtLogOOEILpLZO5t8IOgwjDsSE6QlkjsLJK2RXH759plsIa1_wY4kT1Kw44iBWOcgIbHzvDgkAePWu4iRwAjWxURa6BIGC9PB7Ed08VXxYoAp4vn9fFb8-PTx--q6vP16dbO6vC27StJUsq6pYVCoVc1l2_d0aChIAM3rduhqzXKHTFYDaKlRUTogxQYr3WmpWkobcVbcHLm9h43ZBjtD2BkP1hw2fBgNhGS7Cc0gkCnViEbCIGvZ67oZ-CD7qgNWt6zOrA9H1nZpZ-w7dCnA9AT6tOLs2oz-zmguM7fKgHf3gOB_LhiTmW3scJrAoV-i4aqRVCup9tK3_0g3fgkuP9VexSvNK8azih9VXfAxBhweLsOo2WfEHDNickbMISOGZdObx208WP4kIgvEURBzyeUP_nv2f7C_ARwTyDM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682592512</pqid></control><display><type>article</type><title>C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ju, Shouyong ; Chen, Hanqiao ; Wang, Shaoying ; Lin, Jian ; Ma, Yanli ; Aroian, Raffi V. ; Peng, Donghai ; Sun, Ming</creator><creatorcontrib>Ju, Shouyong ; Chen, Hanqiao ; Wang, Shaoying ; Lin, Jian ; Ma, Yanli ; Aroian, Raffi V. ; Peng, Donghai ; Sun, Ming</creatorcontrib><description>Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis - Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens. Bacillus thuringiensis toxin Cry5Ba triggers potassium ion leakage, causing mitochondrial damage and energy imbalance. C. elegans can monitor this intracellular energy imbalance via AMP-activated protein kinase to trigger innate immune responses.</description><identifier>ISSN: 2399-3642</identifier><identifier>EISSN: 2399-3642</identifier><identifier>DOI: 10.1038/s42003-022-03589-1</identifier><identifier>PMID: 35773333</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 38/1 ; 38/22 ; 38/23 ; 38/5 ; 38/77 ; 38/89 ; 38/91 ; 42/44 ; 631/250/262 ; 631/326/421 ; 82/80 ; 82/83 ; 96 ; 96/34 ; 96/63 ; AMP-activated protein kinase ; AMP-Activated Protein Kinases - metabolism ; Animals ; Bacillus thuringiensis ; Bacillus thuringiensis - metabolism ; Biology ; Biomedical and Life Sciences ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Energy ; Energy balance ; Immune response ; Immunity, Innate ; Innate immunity ; Intracellular ; Kinases ; Life Sciences ; Mitochondria ; Pathogens ; Phosphates ; Potassium ; Surveillance</subject><ispartof>Communications biology, 2022-06, Vol.5 (1), p.643-643, Article 643</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-1c87af6e96724bdd0f80a4aa927bfc791399145fa949e600fe0e8e59c946b0083</citedby><cites>FETCH-LOGICAL-c540t-1c87af6e96724bdd0f80a4aa927bfc791399145fa949e600fe0e8e59c946b0083</cites><orcidid>0000-0002-4918-2357 ; 0000-0003-1764-303X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2682592512?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35773333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju, Shouyong</creatorcontrib><creatorcontrib>Chen, Hanqiao</creatorcontrib><creatorcontrib>Wang, Shaoying</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><creatorcontrib>Ma, Yanli</creatorcontrib><creatorcontrib>Aroian, Raffi V.</creatorcontrib><creatorcontrib>Peng, Donghai</creatorcontrib><creatorcontrib>Sun, Ming</creatorcontrib><title>C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens</title><title>Communications biology</title><addtitle>Commun Biol</addtitle><addtitle>Commun Biol</addtitle><description>Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis - Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens. Bacillus thuringiensis toxin Cry5Ba triggers potassium ion leakage, causing mitochondrial damage and energy imbalance. C. elegans can monitor this intracellular energy imbalance via AMP-activated protein kinase to trigger innate immune responses.</description><subject>14/19</subject><subject>38/1</subject><subject>38/22</subject><subject>38/23</subject><subject>38/5</subject><subject>38/77</subject><subject>38/89</subject><subject>38/91</subject><subject>42/44</subject><subject>631/250/262</subject><subject>631/326/421</subject><subject>82/80</subject><subject>82/83</subject><subject>96</subject><subject>96/34</subject><subject>96/63</subject><subject>AMP-activated protein kinase</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Bacillus thuringiensis</subject><subject>Bacillus thuringiensis - metabolism</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Immune response</subject><subject>Immunity, Innate</subject><subject>Innate immunity</subject><subject>Intracellular</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Mitochondria</subject><subject>Pathogens</subject><subject>Phosphates</subject><subject>Potassium</subject><subject>Surveillance</subject><issn>2399-3642</issn><issn>2399-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAltiwSfFfnHiDVI2grSiCBaytm-Qm41FiD7ZTNG-PZ6aUlgXe2PI957OvfYriNaMXjIrmfZScUlFSzksqqkaX7FlxyoXWpVCSP3-0PinOY9xQSpnWWgn5sjgRVV2LPE6LtLogOOEILpLZO5t8IOgwjDsSE6QlkjsLJK2RXH759plsIa1_wY4kT1Kw44iBWOcgIbHzvDgkAePWu4iRwAjWxURa6BIGC9PB7Ed08VXxYoAp4vn9fFb8-PTx--q6vP16dbO6vC27StJUsq6pYVCoVc1l2_d0aChIAM3rduhqzXKHTFYDaKlRUTogxQYr3WmpWkobcVbcHLm9h43ZBjtD2BkP1hw2fBgNhGS7Cc0gkCnViEbCIGvZ67oZ-CD7qgNWt6zOrA9H1nZpZ-w7dCnA9AT6tOLs2oz-zmguM7fKgHf3gOB_LhiTmW3scJrAoV-i4aqRVCup9tK3_0g3fgkuP9VexSvNK8azih9VXfAxBhweLsOo2WfEHDNickbMISOGZdObx208WP4kIgvEURBzyeUP_nv2f7C_ARwTyDM</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Ju, Shouyong</creator><creator>Chen, Hanqiao</creator><creator>Wang, Shaoying</creator><creator>Lin, Jian</creator><creator>Ma, Yanli</creator><creator>Aroian, Raffi V.</creator><creator>Peng, Donghai</creator><creator>Sun, Ming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4918-2357</orcidid><orcidid>https://orcid.org/0000-0003-1764-303X</orcidid></search><sort><creationdate>20220630</creationdate><title>C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens</title><author>Ju, Shouyong ; Chen, Hanqiao ; Wang, Shaoying ; Lin, Jian ; Ma, Yanli ; Aroian, Raffi V. ; Peng, Donghai ; Sun, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-1c87af6e96724bdd0f80a4aa927bfc791399145fa949e600fe0e8e59c946b0083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>14/19</topic><topic>38/1</topic><topic>38/22</topic><topic>38/23</topic><topic>38/5</topic><topic>38/77</topic><topic>38/89</topic><topic>38/91</topic><topic>42/44</topic><topic>631/250/262</topic><topic>631/326/421</topic><topic>82/80</topic><topic>82/83</topic><topic>96</topic><topic>96/34</topic><topic>96/63</topic><topic>AMP-activated protein kinase</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Bacillus thuringiensis</topic><topic>Bacillus thuringiensis - metabolism</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Immune response</topic><topic>Immunity, Innate</topic><topic>Innate immunity</topic><topic>Intracellular</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Mitochondria</topic><topic>Pathogens</topic><topic>Phosphates</topic><topic>Potassium</topic><topic>Surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Shouyong</creatorcontrib><creatorcontrib>Chen, Hanqiao</creatorcontrib><creatorcontrib>Wang, Shaoying</creatorcontrib><creatorcontrib>Lin, Jian</creatorcontrib><creatorcontrib>Ma, Yanli</creatorcontrib><creatorcontrib>Aroian, Raffi V.</creatorcontrib><creatorcontrib>Peng, Donghai</creatorcontrib><creatorcontrib>Sun, Ming</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Biological Sciences</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Communications biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Shouyong</au><au>Chen, Hanqiao</au><au>Wang, Shaoying</au><au>Lin, Jian</au><au>Ma, Yanli</au><au>Aroian, Raffi V.</au><au>Peng, Donghai</au><au>Sun, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens</atitle><jtitle>Communications biology</jtitle><stitle>Commun Biol</stitle><addtitle>Commun Biol</addtitle><date>2022-06-30</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>643</spage><epage>643</epage><pages>643-643</pages><artnum>643</artnum><issn>2399-3642</issn><eissn>2399-3642</eissn><abstract>Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis - Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens. Bacillus thuringiensis toxin Cry5Ba triggers potassium ion leakage, causing mitochondrial damage and energy imbalance. C. elegans can monitor this intracellular energy imbalance via AMP-activated protein kinase to trigger innate immune responses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35773333</pmid><doi>10.1038/s42003-022-03589-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4918-2357</orcidid><orcidid>https://orcid.org/0000-0003-1764-303X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-3642
ispartof Communications biology, 2022-06, Vol.5 (1), p.643-643, Article 643
issn 2399-3642
2399-3642
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f3e1668384af474d978f2f4d5ca17b17
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 14/19
38/1
38/22
38/23
38/5
38/77
38/89
38/91
42/44
631/250/262
631/326/421
82/80
82/83
96
96/34
96/63
AMP-activated protein kinase
AMP-Activated Protein Kinases - metabolism
Animals
Bacillus thuringiensis
Bacillus thuringiensis - metabolism
Biology
Biomedical and Life Sciences
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Energy
Energy balance
Immune response
Immunity, Innate
Innate immunity
Intracellular
Kinases
Life Sciences
Mitochondria
Pathogens
Phosphates
Potassium
Surveillance
title C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C.%20elegans%20monitor%20energy%20status%20via%20the%20AMPK%20pathway%20to%20trigger%20innate%20immune%20responses%20against%20bacterial%20pathogens&rft.jtitle=Communications%20biology&rft.au=Ju,%20Shouyong&rft.date=2022-06-30&rft.volume=5&rft.issue=1&rft.spage=643&rft.epage=643&rft.pages=643-643&rft.artnum=643&rft.issn=2399-3642&rft.eissn=2399-3642&rft_id=info:doi/10.1038/s42003-022-03589-1&rft_dat=%3Cproquest_doaj_%3E2682592512%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-1c87af6e96724bdd0f80a4aa927bfc791399145fa949e600fe0e8e59c946b0083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2682592512&rft_id=info:pmid/35773333&rfr_iscdi=true