Loading…

In vitro anti-hepatocellular carcinogenesis of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose

1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) is a polyphenol ellagic compound with a variety of pharmacological effects and has an inhibitory effect on lots of cancers. To explore the antitumor effects and mechanism of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose on human hepatocellular carcinoma HepG2 ce...

Full description

Saved in:
Bibliographic Details
Published in:Food & nutrition research 2023, Vol.67, p.1-12
Main Authors: Jiang, Yu-Han, Bi, Jing-Hui, Wu, Min-Rui, Ye, Shi-Jie, Hu, Lei, Li, Long-Jie, Yi, Yang, Wang, Hong-Xun, Wang, Li-Mei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) is a polyphenol ellagic compound with a variety of pharmacological effects and has an inhibitory effect on lots of cancers. To explore the antitumor effects and mechanism of 1,2,3,4,6-Penta-O-galloyl-β-D-glucose on human hepatocellular carcinoma HepG2 cells. A network pharmacology method was first used to predict the possible inhibition of hepatocellular carcinoma growth by 1,2,3,4,6-Penta-O-galloyl-β-D-glucose (β-PGG) through the p53 signaling pathway. Next, the Cell Counting Kit (CCK-8) assay was performed to evaluate changes in the survival rate of human hepatocellular carcinoma HepG2 cells treated with different concentrations of the drug; flow cytometry was used to detect changes in cell cycle, apoptosis, mitochondrial membrane potential (MMP) and intracellular Ca2+ concentration; real-time fluorescence quantification and immunoblotting showed that the expression of P53 genes and proteins associated with the p53 signaling pathway was significantly increased by β-PGG treatment. It was found that β-PGG significantly inhibited survival of HepG2 cells, promoted apoptosis, decreased MMP and intracellular Ca2+ concentration, upregulated P53 gene and protein expression, increased CASP3 expression, and induced apoptosis in HepG2 cells. This study has shown that network pharmacology can accurately predict the target of β-PGG's anti-hepatocellular carcinoma action. Moreover, it was evident that β-PGG can induce apoptosis in HepG2 cells by activating the p53 signaling pathway to achieve its anti-hepatocellular carcinoma effect .
ISSN:1654-661X
1654-661X
DOI:10.29219/fnr.v67.9244