Loading…
Variable Rate Point Cloud Attribute Compression with Non-Local Attention Optimization
Point clouds are widely used as representations of 3D objects and scenes in a number of applications, including virtual and mixed reality, autonomous driving, antiques reconstruction. To reduce the cost for transmitting and storing such data, this paper proposes an end-to-end learning-based point cl...
Saved in:
Published in: | Applied sciences 2022-08, Vol.12 (16), p.8179 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Point clouds are widely used as representations of 3D objects and scenes in a number of applications, including virtual and mixed reality, autonomous driving, antiques reconstruction. To reduce the cost for transmitting and storing such data, this paper proposes an end-to-end learning-based point cloud attribute compression (PCAC) approach. The proposed network adopts a sparse convolution-based variational autoencoder (VAE) structure to compress the color attribute of point clouds. Considering the difficulty of stacked convolution operations in capturing long range dependencies, the attention mechanism is incorporated in which a non-local attention module is developed to capture the local and global correlations in both spatial and channel dimensions. Towards the practical application, an additional modulation network is offered to achieve the variable rate compression purpose in a single network, avoiding the memory cost of storing multiple networks for multiple bitrates. Our proposed method achieves state-of-the-art compression performance compared to other existing learning-based methods and further reduces the gap with the latest MPEG G-PCC reference software TMC13 version 14. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12168179 |