Loading…

Impact of Prenatal and Subsequent Adult Alcohol Exposure on Pro-Inflammatory Cytokine Expression in Brain Regions Necessary for Simple Recognition Memory

Microglia, the immune cells of the brain, are important and necessary for appropriate neural development; however, activation of microglia, concomitant with increased levels of secreted immune molecules during brain development, can leave the brain susceptible to certain long-term changes in immune...

Full description

Saved in:
Bibliographic Details
Published in:Brain sciences 2017-09, Vol.7 (10), p.125
Main Authors: Terasaki, Laurne S, Schwarz, Jaclyn M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microglia, the immune cells of the brain, are important and necessary for appropriate neural development; however, activation of microglia, concomitant with increased levels of secreted immune molecules during brain development, can leave the brain susceptible to certain long-term changes in immune function associated with neurological and developmental disorders. One mechanism by which microglia can be activated is via alcohol exposure. We sought to investigate if low levels of prenatal alcohol exposure can alter the neuroimmune response to a subsequent acute dose of alcohol in adulthood. We also used the novel object location and recognition memory tasks to determine whether there are cognitive deficits associated with low prenatal alcohol exposure and subsequent adulthood alcohol exposure. We found that adult rats exposed to an acute binge-like level of alcohol, regardless of gestational alcohol exposure, have a robust increase in the expression of Interleukin (IL)-6 within the brain, and a significant decrease in the expression of IL-1β and CD11b. Rats exposed to alcohol during gestation, adulthood, or at both time points exhibited impaired cognitive performance in the cognitive tasks. These results indicate that both low-level prenatal alcohol exposure and even acute alcohol exposure in adulthood can significantly impact neuroimmune and associated cognitive function.
ISSN:2076-3425
2076-3425
DOI:10.3390/brainsci7100125