Loading…
Unsupervised Domain Adaptation for Forest Fire Recognition Using Transferable Knowledge from Public Datasets
Deep neural networks (DNNs) have driven the recent advances in fire detection. However, existing methods require large-scale labeled samples to train data-hungry networks, which are difficult to collect and even more laborious to label. This paper applies unsupervised domain adaptation (UDA) to tran...
Saved in:
Published in: | Forests 2023-01, Vol.14 (1), p.52 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep neural networks (DNNs) have driven the recent advances in fire detection. However, existing methods require large-scale labeled samples to train data-hungry networks, which are difficult to collect and even more laborious to label. This paper applies unsupervised domain adaptation (UDA) to transfer knowledge from a labeled public fire dataset to another unlabeled one in practical application scenarios for the first time. Then, a transfer learning benchmark dataset called Fire-DA is built from public datasets for fire recognition. Next, the Deep Subdomain Adaptation Network (DSAN) and the Dynamic Adversarial Adaptation Network (DAAN) are experimented on Fire-DA to provide a benchmark result for future transfer learning research in fire recognition. Finally, two transfer tasks are built from Fire-DA to two public forest fire datasets, the aerial forest fire dataset FLAME and the large-scale fire dataset FD-dataset containing forest fire scenarios. Compared with traditional handcrafted feature-based methods and supervised CNNs, DSAN reaches 82.5% performance of the optimal supervised CNN on the testing set of FLAME. In addition, DSAN achieves 95.8% and 83.5% recognition accuracy on the testing set and challenging testing set of FD-dataset, which outperform the optimal supervised CNN by 0.5% and 2.6%, respectively. The experimental results demonstrate that DSAN achieves an impressive performance on FLAME and a new state of the art on FD-dataset without accessing their labels during training, a fundamental step toward unsupervised forest fire recognition for industrial applications. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f14010052 |