Loading…
Existence of at least four solutions for Schrodinger equations with magnetic potential involving and sign-changing weight function
We consider the elliptic problem $$ - \Delta_A u + u = a_{\lambda}(x) |u|^{q-2}u+b_{\mu}(x) |u|^{p-2}u , $$ for \(x \in \mathbb{R}^N\), \( 1 < q < 2 < p < 2^*= 2N/(N-2)\), \(a_{\lambda}(x)\) is a sign-changing weight function, \(b_{\mu}(x)\) satisfies some additional conditions, \(u \in...
Saved in:
Published in: | Electronic journal of differential equations 2023-07, Vol.2023 (1-??), p.47-16 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the elliptic problem $$ - \Delta_A u + u = a_{\lambda}(x) |u|^{q-2}u+b_{\mu}(x) |u|^{p-2}u , $$ for \(x \in \mathbb{R}^N\), \( 1 < q < 2 < p < 2^*= 2N/(N-2)\), \(a_{\lambda}(x)\) is a sign-changing weight function, \(b_{\mu}(x)\) satisfies some additional conditions, \(u \in H^1_A(\mathbb{R}^N)\) and \(A:\mathbb{R}^N \to \mathbb{R}^N\) is a magnetic potential. Exploring the Bahri-Li argument and some preliminary results we will discuss the existence of a four nontrivial solutions to the problem in question. |
---|---|
ISSN: | 1072-6691 1072-6691 |
DOI: | 10.58997/ejde.2023.47 |