Loading…
A computational model reveals an early transient decrease in fiber cross-linking that unlocks adult regeneration
The decline in regeneration efficiency after birth in mammals is a significant roadblock for regenerative medicine in tissue repair. We previously developed a computational agent based-model (ABM) that recapitulates mechanical interactions between cells and the extracellular-matrix (ECM), to investi...
Saved in:
Published in: | npj Regenerative medicine 2024-10, Vol.9 (1), p.29-9, Article 29 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The decline in regeneration efficiency after birth in mammals is a significant roadblock for regenerative medicine in tissue repair. We previously developed a computational agent based-model (ABM) that recapitulates mechanical interactions between cells and the extracellular-matrix (ECM), to investigate key drivers of tissue repair in adults. Time calibration alongside a parameter sensitivity analysis of the model suggested that an early and transient decrease in ECM cross-linking guides tissue repair toward regeneration. Consistent with the computational model, transient inhibition or stimulation of fiber cross-linking for the first six days after subcutaneous adipose tissue (AT) resection in adult mice led to regenerative or scar healing, respectively. Therefore, this work positions the computational model as a predictive tool for tissue regeneration that with further development will behave as a digital twin of our in vivo model. In addition, it opens new therapeutic approaches targeting ECM cross-linking to induce tissue regeneration in adult mammals. |
---|---|
ISSN: | 2057-3995 2057-3995 |
DOI: | 10.1038/s41536-024-00373-z |