Loading…

Structural basis for functional interactions in dimers of SLC26 transporters

The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. The family shares a 7 + 7 transmembrane segments inverted repeat architecture with the SLC4 and SLC23 families, but holds a regulatory STAS domain in addition. While the only experimental SLC26 structure is monomeri...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-05, Vol.10 (1), p.2032-10, Article 2032
Main Authors: Chang, Yung-Ning, Jaumann, Eva A., Reichel, Katrin, Hartmann, Julia, Oliver, Dominik, Hummer, Gerhard, Joseph, Benesh, Geertsma, Eric R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-999266114b82008ae98e522727b803db52e3ad263807b7a7fad66e6edf924f173
cites cdi_FETCH-LOGICAL-c606t-999266114b82008ae98e522727b803db52e3ad263807b7a7fad66e6edf924f173
container_end_page 10
container_issue 1
container_start_page 2032
container_title Nature communications
container_volume 10
creator Chang, Yung-Ning
Jaumann, Eva A.
Reichel, Katrin
Hartmann, Julia
Oliver, Dominik
Hummer, Gerhard
Joseph, Benesh
Geertsma, Eric R.
description The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. The family shares a 7 + 7 transmembrane segments inverted repeat architecture with the SLC4 and SLC23 families, but holds a regulatory STAS domain in addition. While the only experimental SLC26 structure is monomeric, SLC26 proteins form structural and functional dimers in the lipid membrane. Here we resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize its functional relevance by combining PELDOR/DEER distance measurements and biochemical studies with MD simulations and spin-label ensemble refinement. Our structural model reveals a unique interface different from the SLC4 and SLC23 families. The functionally relevant STAS domain is no prerequisite for dimerization. Characterization of heterodimers indicates that protomers in the dimer functionally interact. The combined structural and functional data define the framework for a mechanistic understanding of functional cooperativity in SLC26 dimers. The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. Here, the authors resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize it by PELDOR/DEER distance measurements, biochemical studies with MD simulations and spin-label ensemble refinement.
doi_str_mv 10.1038/s41467-019-10001-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_f5ed26875ed64eea8d3ccd81bb3ef1c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f5ed26875ed64eea8d3ccd81bb3ef1c6</doaj_id><sourcerecordid>2218970676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-999266114b82008ae98e522727b803db52e3ad263807b7a7fad66e6edf924f173</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVJaUKaP9BDWch5m9GH9XEpFJM2AUMPac9CK43cNfbKlXYT8u-rePN56Wk0M-88I-kl5BOFLxS4viiCCqlaoKalAEDbu3fkhIGgLVWMH706H5OzUjZVA9xQLcQHcswpCK24OCGrmzFPfpyy2zadK31pYspNnAY_9mmoxX4YMbtDVmrShH6HuTQpNjerJZPNmN1Q9ilXVflI3ke3LXj2GE_J7--Xv5ZX7ernj-vlt1XrJcixNcYwKSkVnWYA2qHRuGBMMdVp4KFbMOQuMMk1qE45FV2QEiWGaJiIVPFTcj1zQ3Ibu8_9zuV7m1xvD4WU19blsfdbtHGBlaRVDVIgOh2490HTruMYqZeV9XVm7aduh8HjUF-0fQN92xn6P3adbq0URkkFFXD-CMjp74RltJs05fp1xTJGtVEg1cMaNqt8TqVkjM8bKNgHQ-1sqK2G2oOh9q4OfX59t-eRJ_uqgM-CUlvDGvPL7v9g_wE0t6zA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218970676</pqid></control><display><type>article</type><title>Structural basis for functional interactions in dimers of SLC26 transporters</title><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Chang, Yung-Ning ; Jaumann, Eva A. ; Reichel, Katrin ; Hartmann, Julia ; Oliver, Dominik ; Hummer, Gerhard ; Joseph, Benesh ; Geertsma, Eric R.</creator><creatorcontrib>Chang, Yung-Ning ; Jaumann, Eva A. ; Reichel, Katrin ; Hartmann, Julia ; Oliver, Dominik ; Hummer, Gerhard ; Joseph, Benesh ; Geertsma, Eric R.</creatorcontrib><description>The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. The family shares a 7 + 7 transmembrane segments inverted repeat architecture with the SLC4 and SLC23 families, but holds a regulatory STAS domain in addition. While the only experimental SLC26 structure is monomeric, SLC26 proteins form structural and functional dimers in the lipid membrane. Here we resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize its functional relevance by combining PELDOR/DEER distance measurements and biochemical studies with MD simulations and spin-label ensemble refinement. Our structural model reveals a unique interface different from the SLC4 and SLC23 families. The functionally relevant STAS domain is no prerequisite for dimerization. Characterization of heterodimers indicates that protomers in the dimer functionally interact. The combined structural and functional data define the framework for a mechanistic understanding of functional cooperativity in SLC26 dimers. The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. Here, the authors resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize it by PELDOR/DEER distance measurements, biochemical studies with MD simulations and spin-label ensemble refinement.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-10001-w</identifier><identifier>PMID: 31048734</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/535 ; 631/45/56 ; 631/45/612/1222 ; 82/80 ; 82/83 ; 96/35 ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - isolation &amp; purification ; Bacterial Proteins - metabolism ; Computer simulation ; Deinococcus ; Dimerization ; Dimers ; Distance measurement ; Electron Spin Resonance Spectroscopy ; Humanities and Social Sciences ; Inverted repeat ; Lipids ; Molecular Dynamics Simulation ; Molecular structure ; multidisciplinary ; Mutagenesis, Site-Directed ; Organic Anion Transporters, Sodium-Dependent - chemistry ; Organic Anion Transporters, Sodium-Dependent - metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - isolation &amp; purification ; Recombinant Proteins - metabolism ; Science ; Science (multidisciplinary) ; SLC4A Proteins - chemistry ; SLC4A Proteins - metabolism ; Structure-function relationships ; Sulfate Transporters - chemistry ; Sulfate Transporters - genetics ; Sulfate Transporters - isolation &amp; purification ; Sulfate Transporters - metabolism</subject><ispartof>Nature communications, 2019-05, Vol.10 (1), p.2032-10, Article 2032</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-999266114b82008ae98e522727b803db52e3ad263807b7a7fad66e6edf924f173</citedby><cites>FETCH-LOGICAL-c606t-999266114b82008ae98e522727b803db52e3ad263807b7a7fad66e6edf924f173</cites><orcidid>0000-0002-8368-0923 ; 0000-0002-2789-5444 ; 0000-0003-4968-889X ; 0000-0001-7768-746X ; 0000-0002-9309-5955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2218970676/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2218970676?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31048734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Yung-Ning</creatorcontrib><creatorcontrib>Jaumann, Eva A.</creatorcontrib><creatorcontrib>Reichel, Katrin</creatorcontrib><creatorcontrib>Hartmann, Julia</creatorcontrib><creatorcontrib>Oliver, Dominik</creatorcontrib><creatorcontrib>Hummer, Gerhard</creatorcontrib><creatorcontrib>Joseph, Benesh</creatorcontrib><creatorcontrib>Geertsma, Eric R.</creatorcontrib><title>Structural basis for functional interactions in dimers of SLC26 transporters</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. The family shares a 7 + 7 transmembrane segments inverted repeat architecture with the SLC4 and SLC23 families, but holds a regulatory STAS domain in addition. While the only experimental SLC26 structure is monomeric, SLC26 proteins form structural and functional dimers in the lipid membrane. Here we resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize its functional relevance by combining PELDOR/DEER distance measurements and biochemical studies with MD simulations and spin-label ensemble refinement. Our structural model reveals a unique interface different from the SLC4 and SLC23 families. The functionally relevant STAS domain is no prerequisite for dimerization. Characterization of heterodimers indicates that protomers in the dimer functionally interact. The combined structural and functional data define the framework for a mechanistic understanding of functional cooperativity in SLC26 dimers. The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. Here, the authors resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize it by PELDOR/DEER distance measurements, biochemical studies with MD simulations and spin-label ensemble refinement.</description><subject>631/45/535</subject><subject>631/45/56</subject><subject>631/45/612/1222</subject><subject>82/80</subject><subject>82/83</subject><subject>96/35</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - isolation &amp; purification</subject><subject>Bacterial Proteins - metabolism</subject><subject>Computer simulation</subject><subject>Deinococcus</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Distance measurement</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Humanities and Social Sciences</subject><subject>Inverted repeat</subject><subject>Lipids</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular structure</subject><subject>multidisciplinary</subject><subject>Mutagenesis, Site-Directed</subject><subject>Organic Anion Transporters, Sodium-Dependent - chemistry</subject><subject>Organic Anion Transporters, Sodium-Dependent - metabolism</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Quaternary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SLC4A Proteins - chemistry</subject><subject>SLC4A Proteins - metabolism</subject><subject>Structure-function relationships</subject><subject>Sulfate Transporters - chemistry</subject><subject>Sulfate Transporters - genetics</subject><subject>Sulfate Transporters - isolation &amp; purification</subject><subject>Sulfate Transporters - metabolism</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1rGzEQhkVJaUKaP9BDWch5m9GH9XEpFJM2AUMPac9CK43cNfbKlXYT8u-rePN56Wk0M-88I-kl5BOFLxS4viiCCqlaoKalAEDbu3fkhIGgLVWMH706H5OzUjZVA9xQLcQHcswpCK24OCGrmzFPfpyy2zadK31pYspNnAY_9mmoxX4YMbtDVmrShH6HuTQpNjerJZPNmN1Q9ilXVflI3ke3LXj2GE_J7--Xv5ZX7ernj-vlt1XrJcixNcYwKSkVnWYA2qHRuGBMMdVp4KFbMOQuMMk1qE45FV2QEiWGaJiIVPFTcj1zQ3Ibu8_9zuV7m1xvD4WU19blsfdbtHGBlaRVDVIgOh2490HTruMYqZeV9XVm7aduh8HjUF-0fQN92xn6P3adbq0URkkFFXD-CMjp74RltJs05fp1xTJGtVEg1cMaNqt8TqVkjM8bKNgHQ-1sqK2G2oOh9q4OfX59t-eRJ_uqgM-CUlvDGvPL7v9g_wE0t6zA</recordid><startdate>20190502</startdate><enddate>20190502</enddate><creator>Chang, Yung-Ning</creator><creator>Jaumann, Eva A.</creator><creator>Reichel, Katrin</creator><creator>Hartmann, Julia</creator><creator>Oliver, Dominik</creator><creator>Hummer, Gerhard</creator><creator>Joseph, Benesh</creator><creator>Geertsma, Eric R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8368-0923</orcidid><orcidid>https://orcid.org/0000-0002-2789-5444</orcidid><orcidid>https://orcid.org/0000-0003-4968-889X</orcidid><orcidid>https://orcid.org/0000-0001-7768-746X</orcidid><orcidid>https://orcid.org/0000-0002-9309-5955</orcidid></search><sort><creationdate>20190502</creationdate><title>Structural basis for functional interactions in dimers of SLC26 transporters</title><author>Chang, Yung-Ning ; Jaumann, Eva A. ; Reichel, Katrin ; Hartmann, Julia ; Oliver, Dominik ; Hummer, Gerhard ; Joseph, Benesh ; Geertsma, Eric R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-999266114b82008ae98e522727b803db52e3ad263807b7a7fad66e6edf924f173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/45/535</topic><topic>631/45/56</topic><topic>631/45/612/1222</topic><topic>82/80</topic><topic>82/83</topic><topic>96/35</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - isolation &amp; purification</topic><topic>Bacterial Proteins - metabolism</topic><topic>Computer simulation</topic><topic>Deinococcus</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Distance measurement</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Humanities and Social Sciences</topic><topic>Inverted repeat</topic><topic>Lipids</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular structure</topic><topic>multidisciplinary</topic><topic>Mutagenesis, Site-Directed</topic><topic>Organic Anion Transporters, Sodium-Dependent - chemistry</topic><topic>Organic Anion Transporters, Sodium-Dependent - metabolism</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Quaternary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SLC4A Proteins - chemistry</topic><topic>SLC4A Proteins - metabolism</topic><topic>Structure-function relationships</topic><topic>Sulfate Transporters - chemistry</topic><topic>Sulfate Transporters - genetics</topic><topic>Sulfate Transporters - isolation &amp; purification</topic><topic>Sulfate Transporters - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Yung-Ning</creatorcontrib><creatorcontrib>Jaumann, Eva A.</creatorcontrib><creatorcontrib>Reichel, Katrin</creatorcontrib><creatorcontrib>Hartmann, Julia</creatorcontrib><creatorcontrib>Oliver, Dominik</creatorcontrib><creatorcontrib>Hummer, Gerhard</creatorcontrib><creatorcontrib>Joseph, Benesh</creatorcontrib><creatorcontrib>Geertsma, Eric R.</creatorcontrib><collection>Springer Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Yung-Ning</au><au>Jaumann, Eva A.</au><au>Reichel, Katrin</au><au>Hartmann, Julia</au><au>Oliver, Dominik</au><au>Hummer, Gerhard</au><au>Joseph, Benesh</au><au>Geertsma, Eric R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis for functional interactions in dimers of SLC26 transporters</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-05-02</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>2032</spage><epage>10</epage><pages>2032-10</pages><artnum>2032</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. The family shares a 7 + 7 transmembrane segments inverted repeat architecture with the SLC4 and SLC23 families, but holds a regulatory STAS domain in addition. While the only experimental SLC26 structure is monomeric, SLC26 proteins form structural and functional dimers in the lipid membrane. Here we resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize its functional relevance by combining PELDOR/DEER distance measurements and biochemical studies with MD simulations and spin-label ensemble refinement. Our structural model reveals a unique interface different from the SLC4 and SLC23 families. The functionally relevant STAS domain is no prerequisite for dimerization. Characterization of heterodimers indicates that protomers in the dimer functionally interact. The combined structural and functional data define the framework for a mechanistic understanding of functional cooperativity in SLC26 dimers. The SLC26 family of transporters maintains anion equilibria in all kingdoms of life. Here, the authors resolve the structure of an SLC26 dimer embedded in a lipid membrane and characterize it by PELDOR/DEER distance measurements, biochemical studies with MD simulations and spin-label ensemble refinement.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31048734</pmid><doi>10.1038/s41467-019-10001-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8368-0923</orcidid><orcidid>https://orcid.org/0000-0002-2789-5444</orcidid><orcidid>https://orcid.org/0000-0003-4968-889X</orcidid><orcidid>https://orcid.org/0000-0001-7768-746X</orcidid><orcidid>https://orcid.org/0000-0002-9309-5955</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-05, Vol.10 (1), p.2032-10, Article 2032
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_f5ed26875ed64eea8d3ccd81bb3ef1c6
source Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/535
631/45/56
631/45/612/1222
82/80
82/83
96/35
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - isolation & purification
Bacterial Proteins - metabolism
Computer simulation
Deinococcus
Dimerization
Dimers
Distance measurement
Electron Spin Resonance Spectroscopy
Humanities and Social Sciences
Inverted repeat
Lipids
Molecular Dynamics Simulation
Molecular structure
multidisciplinary
Mutagenesis, Site-Directed
Organic Anion Transporters, Sodium-Dependent - chemistry
Organic Anion Transporters, Sodium-Dependent - metabolism
Protein Multimerization
Protein Structure, Quaternary
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Science
Science (multidisciplinary)
SLC4A Proteins - chemistry
SLC4A Proteins - metabolism
Structure-function relationships
Sulfate Transporters - chemistry
Sulfate Transporters - genetics
Sulfate Transporters - isolation & purification
Sulfate Transporters - metabolism
title Structural basis for functional interactions in dimers of SLC26 transporters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20for%20functional%20interactions%20in%20dimers%20of%20SLC26%20transporters&rft.jtitle=Nature%20communications&rft.au=Chang,%20Yung-Ning&rft.date=2019-05-02&rft.volume=10&rft.issue=1&rft.spage=2032&rft.epage=10&rft.pages=2032-10&rft.artnum=2032&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-10001-w&rft_dat=%3Cproquest_doaj_%3E2218970676%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-999266114b82008ae98e522727b803db52e3ad263807b7a7fad66e6edf924f173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2218970676&rft_id=info:pmid/31048734&rfr_iscdi=true