Loading…

Using recombinant adhesive proteins as durable and green flame-retardant coatings

Current fire retardants are known to be toxic to humans and our environment. As environmental-friendly flame retardants (FRs), protein-based flame retardants have been studied extensively recently, even though they are not durable. In this study, we designed, synthesized and tested a durable protein...

Full description

Saved in:
Bibliographic Details
Published in:Synthetic and systems biotechnology 2021-12, Vol.6 (4), p.369-376
Main Authors: Leong, Weng I., Lo, Owen Lok In, Cheng, Fong Tin, Cheong, Wai Man, Seak, Leo Chi U.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current fire retardants are known to be toxic to humans and our environment. As environmental-friendly flame retardants (FRs), protein-based flame retardants have been studied extensively recently, even though they are not durable. In this study, we designed, synthesized and tested a durable protein-based FR through the fusion of the adhesion domain from either mussel foot protein-5 (mfp-5) or cellulose-binding domain (CBD) with flame retardant protein (SR protein and alpha casein). We first verified the expression of the recombinant proteins in Escherichia coli using Western blot. Then, we coated the fusion protein (carrying cell lysates) to cotton fabrics and wood and verified with Infrared (IR) spectroscopy. Using a vertical burning test and wood flammability test, we confirmed the flame retardancy of the materials after the protein coating. In the vertical burning test, the SR protein and alpha casein flame retardant proteins with the CBD adhesion domain showed a 50.0% and 43.3% increase in flame retardancy. The data is also consistent in the wood flame retardancy test. Confocal imaging experiments also suggested these new fire retardants can be preserved on the materials well even after washing. Overall, our results showed that flame-retardant proteins with adhesion domains are high potential candidates of green alternative flame retardants.
ISSN:2405-805X
2405-805X
DOI:10.1016/j.synbio.2021.10.005