Loading…
Trapezium-Type Inequalities for Raina’s Fractional Integrals Operator Using Generalized Convex Functions
The authors have reviewed a wide production of scientific articles dealing with the evolution of the concept of convexity and its various applications, and based on this they have detected the relationship that can be established between trapezoidal inequalities, generalized convex functions, and sp...
Saved in:
Published in: | Symmetry (Basel) 2020-06, Vol.12 (6), p.1034 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The authors have reviewed a wide production of scientific articles dealing with the evolution of the concept of convexity and its various applications, and based on this they have detected the relationship that can be established between trapezoidal inequalities, generalized convex functions, and special functions, in particular with the so-called Raina function, which generalizes other better known ones such as the hypergeometric function and the Mittag–Leffler function. The authors approach this situation by studying the Hermite–Hadamard inequality, establishing a useful identity using Raina’s fractional integral operator in the setting of ϕ -convex functions, obtaining some integral inequalities connected with the right-hand side of Hermite–Hadamard-type inequalities for Raina’s fractional integrals. Various special cases have been identified. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym12061034 |