Loading…
CSAC-Net: Fast Adaptive sEMG Recognition through Attention Convolution Network and Model-Agnostic Meta-Learning
Gesture recognition through surface electromyography (sEMG) provides a new method for the control algorithm of bionic limbs, which is a promising technology in the field of human-computer interaction. However, subject specificity of sEMG along with the offset of the electrode makes it challenging to...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-05, Vol.22 (10), p.3661 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gesture recognition through surface electromyography (sEMG) provides a new method for the control algorithm of bionic limbs, which is a promising technology in the field of human-computer interaction. However, subject specificity of sEMG along with the offset of the electrode makes it challenging to develop a model that can quickly adapt to new subjects. In view of this, we introduce a new deep neural network called CSAC-Net. Firstly, we extract the time-frequency feature from the raw signal, which contains rich information. Secondly, we design a convolutional neural network supplemented by an attention mechanism for further feature extraction. Additionally, we propose to utilize model-agnostic meta-learning to adapt to new subjects and this learning strategy achieves better results than the state-of-the-art methods. By the basic experiment on CapgMyo and three ablation studies, we demonstrate the advancement of CSAC-Net. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22103661 |