Loading…

An Unsupervised Regularization and Dropout based Deep Neural Network and Its Application for Thermal Error Prediction

Due to the large size of the heavy duty machine tool-foundation systems, space temperature difference is high related to thermal error, which affects to system’s accuracy greatly. The recent highly focused deep learning technology could be an alternative in thermal error prediction. In this paper, a...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-04, Vol.10 (8), p.2870
Main Authors: Tian, Yang, Pan, Guangyuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the large size of the heavy duty machine tool-foundation systems, space temperature difference is high related to thermal error, which affects to system’s accuracy greatly. The recent highly focused deep learning technology could be an alternative in thermal error prediction. In this paper, a thermal prediction model based on a self-organizing deep neural network (DNN) is developed to facilitate accurate-based training for thermal error modeling of heavy-duty machine tool-foundation systems. The proposed model is improved in two ways. Firstly, a dropout self-organizing mechanism for unsupervised training is developed to prevent co-adaptation of the feature detectors. In addition, a regularization enhanced transfer function is proposed to further reduce the less important weights of the process and improve the network feature extraction capability and generalization ability. Furthermore, temperature sensors are used to acquire temperature data from the heavy-duty machine tool and concrete foundation. In this way, sample data of thermal error predictive model are repeatedly collected from the same locations at different times. Finally, accuracy of the thermal error prediction model was validated by thermal error experiments, thus laying the foundation for subsequent studies on thermal error compensation.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10082870