Loading…

A Multi-task Learning Model for Daily Activity Forecast in Smart Home

Daily activity forecasts play an important role in the daily lives of residents in smart homes. Category forecasts and occurrence time forecasts of daily activity are two key tasks. Category forecasts of daily activity are correlated with occurrence time forecasts, however, existing research has onl...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-03, Vol.20 (7), p.1933
Main Authors: Yang, Hong, Gong, Shanshan, Liu, Yaqing, Lin, Zhengkui, Qu, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Daily activity forecasts play an important role in the daily lives of residents in smart homes. Category forecasts and occurrence time forecasts of daily activity are two key tasks. Category forecasts of daily activity are correlated with occurrence time forecasts, however, existing research has only focused on one of the two tasks. Moreover, the performance of daily activity forecasts is low when the two tasks are performed in series. In this paper, a forecast model based on multi-task learning is proposed to forecast category and occurrence time of daily activity mutually and iteratively. Firstly, raw sensor events are pre-processed to form a feature space of daily activity. Secondly, a parallel multi-task learning model which combines a convolutional neural network (CNN) with bidirectional long short-term memory (Bi-LSTM) units are developed as the forecast model. Finally, five distinct datasets are used to evaluate the proposed model. The experimental results show that compared with the state-of-the-art single-task learning models, this model improves accuracy by at least 2.22%, and the metrics of NMAE, NRMSE and R are improved by at least 1.542%, 7.79% and 1.69%, respectively.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20071933