Loading…

Speed Tracking for IFOC Induction Motor Speed Control Using Hybrid Sensorless Speed Estimator Based on Flux Error for Electric Vehicles Application

This paper presents hybrid sensorless speed tracking by an indirect field-oriented control (IFOC) for an induction motor (IM). The sensorless model is based on an improved virtual estimation topology model to predict the virtual speed and flux of the IM using stator current components. The hybrid se...

Full description

Saved in:
Bibliographic Details
Published in:Machines (Basel) 2022-11, Vol.10 (11), p.1089
Main Authors: Sepeeh, Muhamad Syazmie, Zulkifli, Shamsul Aizam, Sim, Sy Yi, Chiu, Huang-Jen, Wanik, Mohd Zamri Che
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents hybrid sensorless speed tracking by an indirect field-oriented control (IFOC) for an induction motor (IM). The sensorless model is based on an improved virtual estimation topology model to predict the virtual speed and flux of the IM using stator current components. The hybrid sensorless model, defined as a modification of voltage with a rotor flux-oriented current model, was also implemented with proportional-integral (PI) control for comparison with the conventional voltage model (CVM). The suggested adaptive mechanism for PI control in the hybrid estimator was able to compensate for the back-EMF error from the rotor flux-oriented current model into the voltage model and change the air gap flux of the IM. An accurate rotor flux position was estimated and used to estimate the speed with low speed error. This IFOC model, with various speed change references, was tested in a simulation environment by using the MATLAB/Simulink program. The proposed hybrid estimator was tested in two different EV operations, which were reverse and forward operations. The effectiveness of the proposed estimator was analyzed for its transient and steady-state performances based on settling time, recovery time and the overshoot and speed error percentages. All the results were in good agreement in terms of the stability of the speed and current controller with minimum speed error obtained, where the average errors were 0.08% and 0.16% for high speed and lower speed, respectively.
ISSN:2075-1702
2075-1702
DOI:10.3390/machines10111089