Loading…
Global population genomic signature of Spodoptera frugiperda (fall armyworm) supports complex introduction events across the Old World
Native to the Americas, the invasive Spodoptera frugiperda (fall armyworm; FAW) was reported in West Africa in 2016, followed by its chronological detection across the Old World and the hypothesis of an eastward Asia expansion. We explored population genomic signatures of American and Old World FAW...
Saved in:
Published in: | Communications biology 2022-04, Vol.5 (1), p.297-297, Article 297 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Native to the Americas, the invasive
Spodoptera frugiperda
(fall armyworm; FAW) was reported in West Africa in 2016, followed by its chronological detection across the Old World and the hypothesis of an eastward Asia expansion. We explored population genomic signatures of American and Old World FAW and identified 12 maternal mitochondrial DNA genome lineages across the invasive range. 870 high-quality nuclear single nucleotide polymorphic DNA markers identified five distinct New World population clusters, broadly reflecting FAW native geographical ranges and the absence of host-plant preferences. We identified unique admixed Old World populations, and admixed and non-admixed Asian FAW individuals, all of which suggested multiple introductions underpinning the pest’s global spread. Directional gene flow from the East into eastern Africa was also detected, in contrast to the west-to-east spread hypothesis. Our study demonstrated the potential of population genomic approaches via international partnership to address global emerging pest threats and biosecurity challenges.
This population genomics study identifies the complex multiple introduction history of Spodoptera frugiperda (fall armyworm) from the Americas, into Africa and Asia. This provides new insight into the ‘east-to-west’ directionality of gene flow, and suggests ample genomic exchange at the nuclear level. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-022-03230-1 |