Loading…

Nanomedicine‐encouraged cellular autophagy promoters favor liver fibrosis progression reversal

Liver fibrosis is a major risk factor for hepatocellular carcinoma origin, and its progression not only correlates with oxidative stress and inflammation, but also is encouraged by autophagy hold‐up. Therefore, new solutions to effectively attenuate oxidative stress and inflammation and coincidently...

Full description

Saved in:
Bibliographic Details
Published in:View (Beijing, China) China), 2024-06, Vol.5 (3), p.n/a
Main Authors: Qian, Cheng, Zhang, Yan, Chen, Xiaoyang, Zhu, Chunyan, Dong, Xiulin, Chen, Weiwei, Ni, Xuejun, Zhang, Kun, Yin, Yifei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Liver fibrosis is a major risk factor for hepatocellular carcinoma origin, and its progression not only correlates with oxidative stress and inflammation, but also is encouraged by autophagy hold‐up. Therefore, new solutions to effectively attenuate oxidative stress and inflammation and coincidently favor autophagy are highly demanded to reverse liver fibrosis, and even hamper its escalation into hepatocellular carcinoma. Herein, the porous manganese‐substituted Prussian blue (PMPB) analogs are harnessed to activate autophagy, scavenge reactive oxygen species (ROS), and suppress inflammation for liver fibrosis therapy. PMPB can effectively inhibit macrophage activation, facilitate macrophage autophagy, eradicate ROS, and blockade cellular cross‐talk, thus impeding further inflammation progression. Moreover, the favorable spontaneous capture of PMPB by Kupffer cells allows more PMPB accumulation in liver to significantly attenuate liver injury and collagen deposition, thereby inhibiting the progression of liver fibrosis. PMPB‐based nanomedicine shows great potentials in promoting autophagy activation, eliminating ROS, inhibiting inflammation, and protecting hepatocytes from oxidative stress‐arised damages, which eventually attenuate the extent of liver fibrosis, holding great promise in clinical translation for treating liver fibrosis. The porous manganese‐substituted Prussian blue (PMPB) analogs have been developed to achieve both ROS scavenging and inflammation inhibition from its essence, activate cellular autophagy, protect hepatocytes from damage, blockade cellular cross‐talk, and alter the plasticity of liver fibrosis for eventually attenuating or reversing liver fibrosis.
ISSN:2688-3988
2688-268X
2688-268X
DOI:10.1002/VIW.20240003