Loading…

Intercomparison of Machine Learning Models for Spatial Downscaling of Daily Mean Temperature in Complex Terrain

We compare three machine learning models—artificial neural network (ANN), random forest (RF), and convolutional neural network (CNN)—for spatial downscaling of temperature at 2 m above ground (T2M) from a 9 km ERA5-Land reanalysis to 1 km in a complex terrain area, including the Non Valley and the A...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2024-09, Vol.15 (9), p.1085
Main Authors: Bhakare, Sudheer, Dal Gesso, Sara, Venturini, Marco, Zardi, Dino, Trentini, Laura, Matiu, Michael, Petitta, Marcello
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We compare three machine learning models—artificial neural network (ANN), random forest (RF), and convolutional neural network (CNN)—for spatial downscaling of temperature at 2 m above ground (T2M) from a 9 km ERA5-Land reanalysis to 1 km in a complex terrain area, including the Non Valley and the Adige Valley in the Italian Alps. The results suggest that CNN performs better than the other methods across all seasons. RF performs similar to CNN, particularly in spring and summer, but its performance is reduced in winter and autumn. The best performance was observed in summer for CNN (R2 = 0.94, RMSE = 1 °C, MAE = 0.78 °C) and the lowest in winter for ANN (R2 = 0.79, RMSE = 1.6 °C, MAE = 1.3 °C). Elevation is an important predictor for ANN and RF, whereas it does not play a significant role for CNN. Additionally, CNN outperforms others even without elevation as an additional feature. Furthermore, MAE increases with higher elevation for ANN across all seasons. Conversely, MAE decreases with increased elevation for RF and CNN, particularly for summer, and remains mostly stable for other seasons.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos15091085