Loading…
Building a DFT+U machine learning interatomic potential for uranium dioxide
Despite uranium dioxide (UO2) being a widely used nuclear fuel, fuel performance models rely extensively on empirical correlations of material behavior, leveraging the historical operating experience of UO2. Mechanistic models that consider an atomistic understanding of the processes governing fuel...
Saved in:
Published in: | Artificial intelligence chemistry 2024-06, Vol.2 (1), p.100042, Article 100042 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Despite uranium dioxide (UO2) being a widely used nuclear fuel, fuel performance models rely extensively on empirical correlations of material behavior, leveraging the historical operating experience of UO2. Mechanistic models that consider an atomistic understanding of the processes governing fuel performance (such as fission gas release and creep) will enable a better description of fuel behavior under non-prototypical conditions such as in new reactor concepts or for modified UO2 fuel compositions. To this end, molecular dynamics simulation is a powerful tool for rapidly predicting physical properties of proposed fuel candidates. However, the reliability of these simulations depends largely on the accuracy of the atomic forces. Traditionally, these forces are computed using either a classical force field (FF) or density functional theory (DFT). While DFT is relatively accurate, the computational cost is burdensome, especially for f-electron elements, such as actinides. By contrast, classical FFs are computationally efficient but are less accurate. For these reasons, we report a new accurate machine learning interatomic potential (MLIP) for UO2 that provides high-fidelity reproduction of DFT forces at a similar low cost to classical FFs. We employ an active learning approach that autonomously augments the DFT training data set to iteratively refine the MLIP. To further improve the quality of our predictions, we utilize transfer learning to retrain our MLIP to higher-accuracy DFT+U data. We validate our MLIPs by comparing predicted physical properties (e.g., thermal expansion and elastic properties) with those from existing classical FFs and DFT/DFT+U calculations, as well as with experimental data when available. |
---|---|
ISSN: | 2949-7477 2949-7477 |
DOI: | 10.1016/j.aichem.2023.100042 |