Loading…
EvoAug: improving generalization and interpretability of genomic deep neural networks with evolution-inspired data augmentations
Deep neural networks (DNNs) hold promise for functional genomics prediction, but their generalization capability may be limited by the amount of available data. To address this, we propose EvoAug, a suite of evolution-inspired augmentations that enhance the training of genomic DNNs by increasing gen...
Saved in:
Published in: | Genome Biology 2023-05, Vol.24 (1), p.105-14, Article 105 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep neural networks (DNNs) hold promise for functional genomics prediction, but their generalization capability may be limited by the amount of available data. To address this, we propose EvoAug, a suite of evolution-inspired augmentations that enhance the training of genomic DNNs by increasing genetic variation. Random transformation of DNA sequences can potentially alter their function in unknown ways, so we employ a fine-tuning procedure using the original non-transformed data to preserve functional integrity. Our results demonstrate that EvoAug substantially improves the generalization and interpretability of established DNNs across prominent regulatory genomics prediction tasks, offering a robust solution for genomic DNNs. |
---|---|
ISSN: | 1474-760X 1474-7596 1474-760X |
DOI: | 10.1186/s13059-023-02941-w |