Loading…
Raw Spectral Filter Array Imaging for Scene Recognition
Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the clas...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-03, Vol.24 (6), p.1961 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-78123d5a79b7531174b08d5ce1ce4a2c943ee45749f83c7684d3cd57bdc070b13 |
container_end_page | |
container_issue | 6 |
container_start_page | 1961 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Askary, Hassan Hardeberg, Jon Yngve Thomas, Jean-Baptiste |
description | Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the classification algorithm limited by the artifacts produced by the demosaicing process. This work explores scene recognition performed on raw spectral filter array images using convolutional neural networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral filter array camera. The classification is performed using a model constructed based on the pretrained Places-CNN. This model utilizes all nine channels of spectral information in the images. A label mapping scheme is also applied to classify the new dataset. Experiments are conducted with different pre-processing steps applied on the raw images and the results are compared. Higher-resolution images are found to perform better even if they contain mosaic patterns. |
doi_str_mv | 10.3390/s24061961 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fdfb4c0fcac0470c906d0f3063e3fff1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788253895</galeid><doaj_id>oai_doaj_org_article_fdfb4c0fcac0470c906d0f3063e3fff1</doaj_id><sourcerecordid>A788253895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-78123d5a79b7531174b08d5ce1ce4a2c943ee45749f83c7684d3cd57bdc070b13</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A-gSFzaw7ZjzyR2TmhVtbBSJaS2nC3HH8GrJF6cLKj_vl62rFpOHs0889rveIriI4NzxAYuJk5Qs6Zmr4pjRpwWknN4_Sw-Kt5N0xqAI6J8WxyhrIg4p-NC3Oo_5d3GmTnpvrwO_exSuUxJP5SrQXdh7EofU3ln3OjKW2diN4Y5xPF98cbrfnIfns6T4sf11f3lt8XN96-ry-XNwlDdzAshGUdbadG0okLGBLUgbWUcM440Nw2hc1QJarxEI2pJFo2tRGsNCGgZnhSrva6Neq02KQw6Paiog_qbiKlTOs3B9E5561sy4I02QAJMA7UFj1CjQ-_9TuvLXmuzbQdns6Wd6ReiLytj-Km6-FsxaAQh8axw-qSQ4q-tm2Y1hMm4vteji9tJITDKU66lzOjn_9B13KYxzypTgIRMcsrU-Z7qdHYQRh_zxdmAtm4IJo7Oh5xfCil5hbKpcsPZvsGkOE3J-cPzGajdMqjDMmT203O_B_Lf7-MjvIGsng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003431824</pqid></control><display><type>article</type><title>Raw Spectral Filter Array Imaging for Scene Recognition</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><creator>Askary, Hassan ; Hardeberg, Jon Yngve ; Thomas, Jean-Baptiste</creator><creatorcontrib>Askary, Hassan ; Hardeberg, Jon Yngve ; Thomas, Jean-Baptiste</creatorcontrib><description>Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the classification algorithm limited by the artifacts produced by the demosaicing process. This work explores scene recognition performed on raw spectral filter array images using convolutional neural networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral filter array camera. The classification is performed using a model constructed based on the pretrained Places-CNN. This model utilizes all nine channels of spectral information in the images. A label mapping scheme is also applied to classify the new dataset. Experiments are conducted with different pre-processing steps applied on the raw images and the results are compared. Higher-resolution images are found to perform better even if they contain mosaic patterns.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24061961</identifier><identifier>PMID: 38544224</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Archives & records ; Bookstores ; Classification ; convolutional neural networks ; Datasets ; Deep learning ; Employee motivation ; Image retrieval ; Neural networks ; Performance evaluation ; scene recognition ; spectral filter array</subject><ispartof>Sensors (Basel, Switzerland), 2024-03, Vol.24 (6), p.1961</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-78123d5a79b7531174b08d5ce1ce4a2c943ee45749f83c7684d3cd57bdc070b13</cites><orcidid>0000-0003-1150-2498 ; 0009-0004-1231-2981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003431824/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003431824?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38544224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Askary, Hassan</creatorcontrib><creatorcontrib>Hardeberg, Jon Yngve</creatorcontrib><creatorcontrib>Thomas, Jean-Baptiste</creatorcontrib><title>Raw Spectral Filter Array Imaging for Scene Recognition</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the classification algorithm limited by the artifacts produced by the demosaicing process. This work explores scene recognition performed on raw spectral filter array images using convolutional neural networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral filter array camera. The classification is performed using a model constructed based on the pretrained Places-CNN. This model utilizes all nine channels of spectral information in the images. A label mapping scheme is also applied to classify the new dataset. Experiments are conducted with different pre-processing steps applied on the raw images and the results are compared. Higher-resolution images are found to perform better even if they contain mosaic patterns.</description><subject>Archives & records</subject><subject>Bookstores</subject><subject>Classification</subject><subject>convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Employee motivation</subject><subject>Image retrieval</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>scene recognition</subject><subject>spectral filter array</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A-gSFzaw7ZjzyR2TmhVtbBSJaS2nC3HH8GrJF6cLKj_vl62rFpOHs0889rveIriI4NzxAYuJk5Qs6Zmr4pjRpwWknN4_Sw-Kt5N0xqAI6J8WxyhrIg4p-NC3Oo_5d3GmTnpvrwO_exSuUxJP5SrQXdh7EofU3ln3OjKW2diN4Y5xPF98cbrfnIfns6T4sf11f3lt8XN96-ry-XNwlDdzAshGUdbadG0okLGBLUgbWUcM440Nw2hc1QJarxEI2pJFo2tRGsNCGgZnhSrva6Neq02KQw6Paiog_qbiKlTOs3B9E5561sy4I02QAJMA7UFj1CjQ-_9TuvLXmuzbQdns6Wd6ReiLytj-Km6-FsxaAQh8axw-qSQ4q-tm2Y1hMm4vteji9tJITDKU66lzOjn_9B13KYxzypTgIRMcsrU-Z7qdHYQRh_zxdmAtm4IJo7Oh5xfCil5hbKpcsPZvsGkOE3J-cPzGajdMqjDMmT203O_B_Lf7-MjvIGsng</recordid><startdate>20240319</startdate><enddate>20240319</enddate><creator>Askary, Hassan</creator><creator>Hardeberg, Jon Yngve</creator><creator>Thomas, Jean-Baptiste</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1150-2498</orcidid><orcidid>https://orcid.org/0009-0004-1231-2981</orcidid></search><sort><creationdate>20240319</creationdate><title>Raw Spectral Filter Array Imaging for Scene Recognition</title><author>Askary, Hassan ; Hardeberg, Jon Yngve ; Thomas, Jean-Baptiste</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-78123d5a79b7531174b08d5ce1ce4a2c943ee45749f83c7684d3cd57bdc070b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Archives & records</topic><topic>Bookstores</topic><topic>Classification</topic><topic>convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Employee motivation</topic><topic>Image retrieval</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>scene recognition</topic><topic>spectral filter array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Askary, Hassan</creatorcontrib><creatorcontrib>Hardeberg, Jon Yngve</creatorcontrib><creatorcontrib>Thomas, Jean-Baptiste</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Askary, Hassan</au><au>Hardeberg, Jon Yngve</au><au>Thomas, Jean-Baptiste</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raw Spectral Filter Array Imaging for Scene Recognition</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-03-19</date><risdate>2024</risdate><volume>24</volume><issue>6</issue><spage>1961</spage><pages>1961-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the classification algorithm limited by the artifacts produced by the demosaicing process. This work explores scene recognition performed on raw spectral filter array images using convolutional neural networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral filter array camera. The classification is performed using a model constructed based on the pretrained Places-CNN. This model utilizes all nine channels of spectral information in the images. A label mapping scheme is also applied to classify the new dataset. Experiments are conducted with different pre-processing steps applied on the raw images and the results are compared. Higher-resolution images are found to perform better even if they contain mosaic patterns.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38544224</pmid><doi>10.3390/s24061961</doi><orcidid>https://orcid.org/0000-0003-1150-2498</orcidid><orcidid>https://orcid.org/0009-0004-1231-2981</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-03, Vol.24 (6), p.1961 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fdfb4c0fcac0470c906d0f3063e3fff1 |
source | PubMed Central (Open Access); Publicly Available Content (ProQuest) |
subjects | Archives & records Bookstores Classification convolutional neural networks Datasets Deep learning Employee motivation Image retrieval Neural networks Performance evaluation scene recognition spectral filter array |
title | Raw Spectral Filter Array Imaging for Scene Recognition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raw%20Spectral%20Filter%20Array%20Imaging%20for%20Scene%20Recognition&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Askary,%20Hassan&rft.date=2024-03-19&rft.volume=24&rft.issue=6&rft.spage=1961&rft.pages=1961-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24061961&rft_dat=%3Cgale_doaj_%3EA788253895%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-78123d5a79b7531174b08d5ce1ce4a2c943ee45749f83c7684d3cd57bdc070b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003431824&rft_id=info:pmid/38544224&rft_galeid=A788253895&rfr_iscdi=true |