Loading…

Raw Spectral Filter Array Imaging for Scene Recognition

Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the clas...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-03, Vol.24 (6), p.1961
Main Authors: Askary, Hassan, Hardeberg, Jon Yngve, Thomas, Jean-Baptiste
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c469t-78123d5a79b7531174b08d5ce1ce4a2c943ee45749f83c7684d3cd57bdc070b13
container_end_page
container_issue 6
container_start_page 1961
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Askary, Hassan
Hardeberg, Jon Yngve
Thomas, Jean-Baptiste
description Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the classification algorithm limited by the artifacts produced by the demosaicing process. This work explores scene recognition performed on raw spectral filter array images using convolutional neural networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral filter array camera. The classification is performed using a model constructed based on the pretrained Places-CNN. This model utilizes all nine channels of spectral information in the images. A label mapping scheme is also applied to classify the new dataset. Experiments are conducted with different pre-processing steps applied on the raw images and the results are compared. Higher-resolution images are found to perform better even if they contain mosaic patterns.
doi_str_mv 10.3390/s24061961
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fdfb4c0fcac0470c906d0f3063e3fff1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788253895</galeid><doaj_id>oai_doaj_org_article_fdfb4c0fcac0470c906d0f3063e3fff1</doaj_id><sourcerecordid>A788253895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-78123d5a79b7531174b08d5ce1ce4a2c943ee45749f83c7684d3cd57bdc070b13</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A-gSFzaw7ZjzyR2TmhVtbBSJaS2nC3HH8GrJF6cLKj_vl62rFpOHs0889rveIriI4NzxAYuJk5Qs6Zmr4pjRpwWknN4_Sw-Kt5N0xqAI6J8WxyhrIg4p-NC3Oo_5d3GmTnpvrwO_exSuUxJP5SrQXdh7EofU3ln3OjKW2diN4Y5xPF98cbrfnIfns6T4sf11f3lt8XN96-ry-XNwlDdzAshGUdbadG0okLGBLUgbWUcM440Nw2hc1QJarxEI2pJFo2tRGsNCGgZnhSrva6Neq02KQw6Paiog_qbiKlTOs3B9E5561sy4I02QAJMA7UFj1CjQ-_9TuvLXmuzbQdns6Wd6ReiLytj-Km6-FsxaAQh8axw-qSQ4q-tm2Y1hMm4vteji9tJITDKU66lzOjn_9B13KYxzypTgIRMcsrU-Z7qdHYQRh_zxdmAtm4IJo7Oh5xfCil5hbKpcsPZvsGkOE3J-cPzGajdMqjDMmT203O_B_Lf7-MjvIGsng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3003431824</pqid></control><display><type>article</type><title>Raw Spectral Filter Array Imaging for Scene Recognition</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content (ProQuest)</source><creator>Askary, Hassan ; Hardeberg, Jon Yngve ; Thomas, Jean-Baptiste</creator><creatorcontrib>Askary, Hassan ; Hardeberg, Jon Yngve ; Thomas, Jean-Baptiste</creatorcontrib><description>Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the classification algorithm limited by the artifacts produced by the demosaicing process. This work explores scene recognition performed on raw spectral filter array images using convolutional neural networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral filter array camera. The classification is performed using a model constructed based on the pretrained Places-CNN. This model utilizes all nine channels of spectral information in the images. A label mapping scheme is also applied to classify the new dataset. Experiments are conducted with different pre-processing steps applied on the raw images and the results are compared. Higher-resolution images are found to perform better even if they contain mosaic patterns.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24061961</identifier><identifier>PMID: 38544224</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Archives &amp; records ; Bookstores ; Classification ; convolutional neural networks ; Datasets ; Deep learning ; Employee motivation ; Image retrieval ; Neural networks ; Performance evaluation ; scene recognition ; spectral filter array</subject><ispartof>Sensors (Basel, Switzerland), 2024-03, Vol.24 (6), p.1961</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c469t-78123d5a79b7531174b08d5ce1ce4a2c943ee45749f83c7684d3cd57bdc070b13</cites><orcidid>0000-0003-1150-2498 ; 0009-0004-1231-2981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3003431824/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3003431824?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38544224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Askary, Hassan</creatorcontrib><creatorcontrib>Hardeberg, Jon Yngve</creatorcontrib><creatorcontrib>Thomas, Jean-Baptiste</creatorcontrib><title>Raw Spectral Filter Array Imaging for Scene Recognition</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the classification algorithm limited by the artifacts produced by the demosaicing process. This work explores scene recognition performed on raw spectral filter array images using convolutional neural networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral filter array camera. The classification is performed using a model constructed based on the pretrained Places-CNN. This model utilizes all nine channels of spectral information in the images. A label mapping scheme is also applied to classify the new dataset. Experiments are conducted with different pre-processing steps applied on the raw images and the results are compared. Higher-resolution images are found to perform better even if they contain mosaic patterns.</description><subject>Archives &amp; records</subject><subject>Bookstores</subject><subject>Classification</subject><subject>convolutional neural networks</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Employee motivation</subject><subject>Image retrieval</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>scene recognition</subject><subject>spectral filter array</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A-gSFzaw7ZjzyR2TmhVtbBSJaS2nC3HH8GrJF6cLKj_vl62rFpOHs0889rveIriI4NzxAYuJk5Qs6Zmr4pjRpwWknN4_Sw-Kt5N0xqAI6J8WxyhrIg4p-NC3Oo_5d3GmTnpvrwO_exSuUxJP5SrQXdh7EofU3ln3OjKW2diN4Y5xPF98cbrfnIfns6T4sf11f3lt8XN96-ry-XNwlDdzAshGUdbadG0okLGBLUgbWUcM440Nw2hc1QJarxEI2pJFo2tRGsNCGgZnhSrva6Neq02KQw6Paiog_qbiKlTOs3B9E5561sy4I02QAJMA7UFj1CjQ-_9TuvLXmuzbQdns6Wd6ReiLytj-Km6-FsxaAQh8axw-qSQ4q-tm2Y1hMm4vteji9tJITDKU66lzOjn_9B13KYxzypTgIRMcsrU-Z7qdHYQRh_zxdmAtm4IJo7Oh5xfCil5hbKpcsPZvsGkOE3J-cPzGajdMqjDMmT203O_B_Lf7-MjvIGsng</recordid><startdate>20240319</startdate><enddate>20240319</enddate><creator>Askary, Hassan</creator><creator>Hardeberg, Jon Yngve</creator><creator>Thomas, Jean-Baptiste</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1150-2498</orcidid><orcidid>https://orcid.org/0009-0004-1231-2981</orcidid></search><sort><creationdate>20240319</creationdate><title>Raw Spectral Filter Array Imaging for Scene Recognition</title><author>Askary, Hassan ; Hardeberg, Jon Yngve ; Thomas, Jean-Baptiste</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-78123d5a79b7531174b08d5ce1ce4a2c943ee45749f83c7684d3cd57bdc070b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Archives &amp; records</topic><topic>Bookstores</topic><topic>Classification</topic><topic>convolutional neural networks</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Employee motivation</topic><topic>Image retrieval</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>scene recognition</topic><topic>spectral filter array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Askary, Hassan</creatorcontrib><creatorcontrib>Hardeberg, Jon Yngve</creatorcontrib><creatorcontrib>Thomas, Jean-Baptiste</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Askary, Hassan</au><au>Hardeberg, Jon Yngve</au><au>Thomas, Jean-Baptiste</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raw Spectral Filter Array Imaging for Scene Recognition</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-03-19</date><risdate>2024</risdate><volume>24</volume><issue>6</issue><spage>1961</spage><pages>1961-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Scene recognition is the task of identifying the environment shown in an image. Spectral filter array cameras allow for fast capture of multispectral images. Scene recognition in multispectral images is usually performed after demosaicing the raw image. Along with adding latency, this makes the classification algorithm limited by the artifacts produced by the demosaicing process. This work explores scene recognition performed on raw spectral filter array images using convolutional neural networks. For this purpose, a new raw image dataset is collected for scene recognition with a spectral filter array camera. The classification is performed using a model constructed based on the pretrained Places-CNN. This model utilizes all nine channels of spectral information in the images. A label mapping scheme is also applied to classify the new dataset. Experiments are conducted with different pre-processing steps applied on the raw images and the results are compared. Higher-resolution images are found to perform better even if they contain mosaic patterns.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38544224</pmid><doi>10.3390/s24061961</doi><orcidid>https://orcid.org/0000-0003-1150-2498</orcidid><orcidid>https://orcid.org/0009-0004-1231-2981</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-03, Vol.24 (6), p.1961
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fdfb4c0fcac0470c906d0f3063e3fff1
source PubMed Central (Open Access); Publicly Available Content (ProQuest)
subjects Archives & records
Bookstores
Classification
convolutional neural networks
Datasets
Deep learning
Employee motivation
Image retrieval
Neural networks
Performance evaluation
scene recognition
spectral filter array
title Raw Spectral Filter Array Imaging for Scene Recognition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raw%20Spectral%20Filter%20Array%20Imaging%20for%20Scene%20Recognition&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Askary,%20Hassan&rft.date=2024-03-19&rft.volume=24&rft.issue=6&rft.spage=1961&rft.pages=1961-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24061961&rft_dat=%3Cgale_doaj_%3EA788253895%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-78123d5a79b7531174b08d5ce1ce4a2c943ee45749f83c7684d3cd57bdc070b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3003431824&rft_id=info:pmid/38544224&rft_galeid=A788253895&rfr_iscdi=true