Loading…
Global attractivity in a non-monotone age-structured model with age-dependent diffusion and death rates
In this paper, the global attractivity of the homogeneous equilibrium solution for the diffusive age-structured model { ∂ u ∂ t + ∂ u ∂ a = D ( a ) ∂ 2 u ∂ x 2 − d ( a ) u , t ≥ t 0 ≥ A l > 0 , a ≥ 0 , 0 < x < π , w ( t , x ) = ∫ τ A l u ( t , a , x ) d a , t ≥ t 0 ≥ A l > 0 , 0 < x &...
Saved in:
Published in: | Advances in difference equations 2018-11, Vol.2018 (1), p.1-12, Article 419 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the global attractivity of the homogeneous equilibrium solution for the diffusive age-structured model
{
∂
u
∂
t
+
∂
u
∂
a
=
D
(
a
)
∂
2
u
∂
x
2
−
d
(
a
)
u
,
t
≥
t
0
≥
A
l
>
0
,
a
≥
0
,
0
<
x
<
π
,
w
(
t
,
x
)
=
∫
τ
A
l
u
(
t
,
a
,
x
)
d
a
,
t
≥
t
0
≥
A
l
>
0
,
0
<
x
<
π
,
τ
≥
0
,
u
(
t
,
0
,
x
)
=
f
(
w
(
t
,
x
)
)
,
t
≥
t
0
≥
A
l
>
0
,
0
<
x
<
π
,
u
x
(
t
,
a
,
0
)
=
u
x
(
t
,
a
,
π
)
=
0
,
t
≥
t
0
≥
A
l
>
0
,
a
≥
0
,
is established when the diffusion and death rates,
D
(
a
)
and
d
(
a
)
, respectively, are age dependent during the whole life of the species, and when the birth function
f
(
w
)
is nonmonotone. In the paper, we also present some demonstrative examples. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-018-1884-4 |