Loading…

Location-Aware Source Routing Protocol for Underwater Acoustic Networks of AUVs

Acoustic networks of autonomous underwater vehicles (AUVs) cannot typically rely on protocols intended for terrestrial radio networks. This work describes a new location-aware source routing (LASR) protocol shown to provide superior network performance over two commonly used network protocols—floodi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electrical and computer engineering 2012-01, Vol.2012 (2012), p.1-18
Main Authors: Carlson, Edward A., Beaujean, Pierre-Philippe J., An, Edgar
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acoustic networks of autonomous underwater vehicles (AUVs) cannot typically rely on protocols intended for terrestrial radio networks. This work describes a new location-aware source routing (LASR) protocol shown to provide superior network performance over two commonly used network protocols—flooding and dynamic source routing (DSR)—in simulation studies of underwater acoustic networks of AUVs. LASR shares some features with DSR but also includes an improved link/route metric and a node tracking system. LASR also replaces DSR's shortest-path routing with the expected transmission count (ETX) metric. This allows LASR to make more informed routing decisions, which greatly increases performance compared to DSR. Provision for a node tracking system is another novel addition: using the time-division multiple access (TDMA) feature of the simulated acoustic modem, LASR includes a tracking system that predicts node locations, so that LASR can proactively respond to topology changes. LASR delivers 2-3 times as many messages as flooding in 72% of the simulated missions and delivers 2–4 times as many messages as DSR in 100% of the missions. In 67% of the simulated missions, LASR delivers messages requiring multiple hops to cross the network with 2–5 times greater reliability than flooding or DSR.
ISSN:2090-0147
2090-0155
DOI:10.1155/2012/765924