Loading…
Weak Convergence of Set-Valued Functions and Control
Weak convergence on the space of integrably bounded set-valued functions is defined. Generalizations of results of weak convergence of real-valued integrable functions are obtained in the set-valued case. The results are applied to the characterization of the continuous dependence of the attainable...
Saved in:
Main Author: | |
---|---|
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Weak convergence on the space of integrably bounded set-valued functions is defined. Generalizations of results of weak convergence of real-valued integrable functions are obtained in the set-valued case. The results are applied to the characterization of the continuous dependence of the attainable set of a linear control system on the restraint set. It is shown that the weak convergence of the restraint set is a sufficient condition for the uniform convergence of the attainable set, and under the additional condition of uniform integrability the weak convergence is also a necessary condition. (Author) |
---|