Loading…
Hydraulic Tomography and High-Resolution Slug Testing to Determine Hydraulic Conductivity Distributions
Considerable research has shown that the major control on the transport and fate of a pollutant as it moves through an aquifer is the spatial distribution of hydraulic conductivity. Although chemical and microbial processes play important roles, their influence cannot be understood without a detaile...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Considerable research has shown that the major control on the transport and fate of a pollutant as it moves through an aquifer is the spatial distribution of hydraulic conductivity. Although chemical and microbial processes play important roles, their influence cannot be understood without a detailed knowledge of the subsurface variations in hydraulic conductivity at a site. Many theories have been developed to quantify, in a generic sense, the influence of these variations using stochastic processes or fractal representations. It is increasingly apparent, however, that site-specific features of the hydraulic conductivity distribution (such as high conductivity zones) need to be quantified to reliably predict contaminant movement. Conventional hydraulic field techniques only provide information of a highly averaged nature or information restricted to the immediate vicinity of the test well. Therefore, development of new innovative methods to delineate the detailed hydraulic conductivity distribution at a given site should be a high priority. The research proposed here is directed at addressing this problem by developing techniques to map 3-D hydraulic conductivity distributions.
The original document contains color images. |
---|