Loading…
High-throughput exploration of stable semiconductors using deep learning and density functional theory
Semiconductors can lead to new applications and technological innovations. In this work, we developed a computational pipeline to discover new semiconductors by combining deep learning and high-throughput first-principles calculations. We used a random strategy combined with group and graph theory t...
Saved in:
Published in: | Materials science in semiconductor processing 2025-03, Vol.188, p.109150, Article 109150 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Semiconductors can lead to new applications and technological innovations. In this work, we developed a computational pipeline to discover new semiconductors by combining deep learning and high-throughput first-principles calculations. We used a random strategy combined with group and graph theory to generate initial boron nitride polymorphs and developed a classifier based on graph convolutional neural network to screen semiconductors and study their stability. We found 26 new stable boron nitride polymorphs in Pc phase, of which 3 are direct bandgap semiconductors, and 10 are quasi-direct bandgap semiconductors. This discovery not only expands the library of known semiconductor materials but also provides potential candidates for high-performance electronic and optoelectronic devices, paving the way for future technological advancements.
[Display omitted] |
---|---|
ISSN: | 1369-8001 |
DOI: | 10.1016/j.mssp.2024.109150 |