Loading…
On Ψω-factorizable groups
A topological group G is called Ψω-factorizable (resp. M-factorizable) if every continuous real-valued function on G admits a factorization via a continuous homomorphism onto a topological group H with ψ(H)≤ω (resp. a first-countable group). The first purpose of this article is to discuss some chara...
Saved in:
Published in: | Topology and its applications 2024-12, Vol.358, Article 109129 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A topological group G is called Ψω-factorizable (resp. M-factorizable) if every continuous real-valued function on G admits a factorization via a continuous homomorphism onto a topological group H with ψ(H)≤ω (resp. a first-countable group). The first purpose of this article is to discuss some characterizations of Ψω-factorizable groups. It is shown that a topological group G is Ψω-factorizable if and only if every continuous real-valued function on G is Gδ-uniformly continuous, if and only if for every cozero-set U of G, there exists a Gδ-subgroup N of G such that UN=U. Sufficient conditions on the Ψω-factorizable group G to be M-factorizable are that G is τ-fine and τ-steady for a cardinal τ. |
---|---|
ISSN: | 0166-8641 |
DOI: | 10.1016/j.topol.2024.109129 |