Loading…
Z-primary submodules
Let R is a commutative ring with identity and M be a unitary R -module , a submodule N of an R-module M is called primary if whenever rx E N ; r E R,x E M, then either x E Nor r" 6 [N\ M] for some n 6 Z+. In this paper we say that N is Z -primary submodule of an R -module M if whenever f(x).x E...
Saved in:
Published in: | Iraqi journal of science 2016, Vol.57 (sA), p.163-167 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | ara ; eng |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let R is a commutative ring with identity and M be a unitary R -module , a submodule N of an R-module M is called primary if whenever rx E N ; r E R,x E M, then either x E Nor r" 6 [N\ M] for some n 6 Z+. In this paper we say that N is Z -primary submodule of an R -module M if whenever f(x).x E N,f E M* = Hom(M,R), xe M, then either x E N or (f(x))n 6 [N:Mf for some n E Z+, where [N: M] = {r: r E R and rM £ N}. We also study a Z-primary module if (0) is a Z-primary submodule of M. We give many properties of Z-primary submodule of M and Z-primary module. |
---|---|
ISSN: | 0067-2904 2312-1637 |