Loading…
Topological derivatives via one-sided derivative of parametrized minima and minimax
PurposeThe object of the paper is to illustrate how to obtain the topological derivative as a semidifferential in a general and practical mathematical setting for d-dimensional perturbations of a bounded open domain in the n-dimensional Euclidean space.Design/methodology/approachThe underlying metho...
Saved in:
Published in: | Engineering computations 2022-02, Vol.39 (1), p.34-59 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | PurposeThe object of the paper is to illustrate how to obtain the topological derivative as a semidifferential in a general and practical mathematical setting for d-dimensional perturbations of a bounded open domain in the n-dimensional Euclidean space.Design/methodology/approachThe underlying methodology uses mathematical notions and powerful tools with ready to check assumptions and ready to use formulas via theorems on the one-sided derivative of parametrized minima and minimax.FindingsThe theory and the examples indicate that the methodology applies to a wide range of problems: (1) compliance and (2) state constrained objective functions where the coupled state/adjoint state equations appear without a posteriori substitution of the adjoint state.Research limitations/implicationsDirect approach that considerably simplifies the analysis and computations.Originality/valueIt was known that the shape derivative was a differential. But the topological derivative is only a semidifferential, that is, a one-sided directional derivative, which is not linear with respect to the direction, and the directions are d-dimensional bounded measures. |
---|---|
ISSN: | 0264-4401 1758-7077 |
DOI: | 10.1108/EC-06-2021-0318 |