Loading…

A high-resolution method based on off-step non-polynomial spline approximations for the solution of Burgers-Fisher and coupled nonlinear Burgers’ equations

Purpose This paper aims to develop a new high accuracy numerical method based on off-step non-polynomial spline in tension approximations for the solution of Burgers-Fisher and coupled nonlinear Burgers’ equations on a graded mesh. The spline method reported here is third order accurate in space and...

Full description

Saved in:
Bibliographic Details
Published in:Engineering computations 2020-08, Vol.37 (8), p.2785-2818
Main Authors: Mohanty, Ranjan Kumar, Sharma, Sachin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose This paper aims to develop a new high accuracy numerical method based on off-step non-polynomial spline in tension approximations for the solution of Burgers-Fisher and coupled nonlinear Burgers’ equations on a graded mesh. The spline method reported here is third order accurate in space and second order accurate in time. The proposed spline method involves only two off-step points and a central point on a graded mesh. The method is two-level implicit in nature and directly derived from the continuity condition of the first order space derivative of the non-polynomial tension spline function. The linear stability analysis of the proposed method has been examined and it is shown that the proposed two-level method is unconditionally stable for a linear model problem. The method is directly applicable to problems in polar systems. To demonstrate the strength and utility of the proposed method, the authors have solved the generalized Burgers-Huxley equation, generalized Burgers-Fisher equation, coupled Burgers-equations and parabolic equation in polar coordinates. The authors show that the proposed method enables us to obtain the high accurate solution for high Reynolds number. Design/methodology/approach In this method, the authors use only two-level in time-direction, and at each time-level, the authors use three grid points for the unknown function u(x,t) and two off-step points for the known variable x in spatial direction. The methodology followed in this paper is the construction of a non-polynomial spline function and using its continuity properties to obtain consistency condition, which is third order accurate on a graded mesh and fourth order accurate on a uniform mesh. From this consistency condition, the authors derive the proposed numerical method. The proposed method, when applied to a linear equation is shown to be unconditionally stable. To assess the validity and accuracy, the method is applied to solve several benchmark problems, and numerical results are provided to demonstrate the usefulness of the proposed method. Findings The paper provides a third order numerical scheme on a graded mesh and fourth order spline method on a uniform mesh obtained directly from the consistency condition. In earlier methods, consistency conditions were only second order accurate. This brings an edge over other past methods. Also, the method is directly applicable to physical problems involving singular coefficients. So no modification in the method is
ISSN:0264-4401
1758-7077
DOI:10.1108/EC-08-2019-0359