Loading…
Yet more frogs
Extending a recent paper by Derek Holton, we show how to represent the algorithm for the Frog Problem diagrammatically. This diagrammatic representation suggests a simpler proof of the symmetrical case (equal numbers of frogs of each colour) by allowing the even and odd cases to be treated together....
Saved in:
Published in: | International journal of mathematical education in science and technology 2011-06, Vol.42 (4), p.524-533 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extending a recent paper by Derek Holton, we show how to represent the algorithm for the Frog Problem diagrammatically. This diagrammatic representation suggests a simpler proof of the symmetrical case (equal numbers of frogs of each colour) by allowing the even and odd cases to be treated together. It also provides a proof in the asymmetrical case (unequal numbers of frogs) as an extension of the symmetrical case. The issue of whether frogs of a given colour should be allowed to move in either direction is discussed. While it is possible to restrict to the case of movement in a single direction, results for bi-directional movement can be obtained by making the correspondence between the algorithm and its diagrammatic representation more concrete. The Frog Problem then becomes a form of constrained shortest path problem around the diagram, and from this point of view optimality of the algorithm becomes much clearer. |
---|---|
ISSN: | 0020-739X 1464-5211 |
DOI: | 10.1080/0020739X.2010.543164 |