Loading…

Analysis of heat and mass transfer in freeze drying

The main objective of this work is to build a mathematical model that describes heat and mass transfer in freeze-drying when both plate heating and radiation heating are applied and also to provide further understanding of the mechanism of the drying process. The model, unlike other models, may be u...

Full description

Saved in:
Bibliographic Details
Published in:Drying technology 2003-01, Vol.21 (2), p.249-263
Main Authors: Jafar, F, Farid, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main objective of this work is to build a mathematical model that describes heat and mass transfer in freeze-drying when both plate heating and radiation heating are applied and also to provide further understanding of the mechanism of the drying process. The model, unlike other models, may be used for situations in which sublimation occurs within a temperature range, i.e., the non-existence of a sharp interface and also for cases in which more than one interface may form. The developed model has been tested against experimental measurements of freeze-drying of milk under different operating conditions. Measurements were done using Virtis BT3.3ES freeze dryer with vertical manifolds. The milk was contained in a glassware, specially designed for this project. Four thermocouples were fixed at different positions to track the drying progress. The experimental measurements show no significant shrinkage in the frozen milk when dried, leaving the milk highly porous in structure. In this experimental work, the low thermal conductivity of the dried layer was found to control the process without any significant mass transfer resistance. This includes plate heating where drying was found to progress from the heating surface similar to radiation heating. This is unlike what has been reported in some of literature that drying starts always from the top surface. The model, which was based on heat transfer control, showed a reasonable agreement with the experimental measurements of both plate heating and radiation heating.
ISSN:0737-3937
1532-2300
DOI:10.1081/DRT-120017746