Loading…
X-ray Absorption Spectroscopy (XAS) Corroboration of the Uptake and Storage of CeO2 Nanoparticles and Assessment of Their Differential Toxicity in Four Edible Plant Species
Fate, transport, and possible toxicity of cerium oxide nanoparticles (nanoceria, CeO2) are still unknown. In this study, seeds of alfalfa (Medicago sativa), corn (Zea mays), cucumber (Cucumis sativus), and tomato (Lycopersicon esculentum) were treated with nanoceria at 0−4000 mg L−1. The cerium upta...
Saved in:
Published in: | Journal of agricultural and food chemistry 2010-03, Vol.58 (6), p.3689-3693 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fate, transport, and possible toxicity of cerium oxide nanoparticles (nanoceria, CeO2) are still unknown. In this study, seeds of alfalfa (Medicago sativa), corn (Zea mays), cucumber (Cucumis sativus), and tomato (Lycopersicon esculentum) were treated with nanoceria at 0−4000 mg L−1. The cerium uptake and oxidation state within tissues were determined using inductively coupled plasma−optical emission spectroscopy (ICP−OES) and X-ray absorption spectroscopy (XAS), respectively. The germination rate and root elongation were also determined. Results showed that nanoceria significantly reduced corn germination (about 30% at 2000 mg L−1; p < 0.05), and at 2000 mg L−1, the germination of tomato and cucumber was reduced by 30 and 20%, respectively (p < 0.05). The root growth was significantly promoted (p < 0.05) by nanoceria in cucumber and corn but reduced (p < 0.05) in alfalfa and tomato. At almost all concentrations, nanoceria promoted shoot elongation in the four plant species. XAS data clearly showed the nanoceria within tissues of the four plant species. To the authors’ knowledge, this is the first report on the presence nanoceria within plants. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf904472e |