Loading…

The effects of isolation and colonization history on the genetic structure of marine-relict populations of Atlantic cod (Gadus morhua) in the Canadian Arctic

The genetic consequences of extended periods at low population size are fundamental to the conservation of depleted species such as the Atlantic cod (Gadus morhua). We compared microsatellite genetic variability among cod populations in Canadian Arctic lakes with that of Gilbert Bay resident and ins...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of fisheries and aquatic sciences 2006-08, Vol.63 (8), p.1830-1839
Main Authors: Hardie, David C, Gillett, Roxanne M, Hutchings, Jeffrey A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The genetic consequences of extended periods at low population size are fundamental to the conservation of depleted species such as the Atlantic cod (Gadus morhua). We compared microsatellite genetic variability among cod populations in Canadian Arctic lakes with that of Gilbert Bay resident and inshore cod from eastern Canada. The Arctic populations had the lowest genetic diversity and were the most strongly genetically structured and distinct. By contrast, eastern Canadian samples expressed high allelic diversity and were not significantly genetically structured or distinct relative to each other, whereas Gilbert Bay resident cod were intermediate to the Arctic and eastern Canadian groups. Our results are consistent with the hypothesis that the Arctic populations were colonized between 8000 and 5000 years ago and have experienced little or no gene flow since that time. Despite isolation at the extreme of the species' range, the Arctic populations have retained relatively high heterozygosities and high genetic effective population sizes relative to census sizes (N e -N c ratios). Potential explanations for this include the absence of fishing pressure, allowing for the persistence of large, highly fecund individuals, as well as biotic (e.g., absence of planktivores) and abiotic (e.g., low environmental stochasticity) factors in the Arctic lakes that minimize individual variance in reproductive success.
ISSN:0706-652X
1205-7533
DOI:10.1139/f06-085