Loading…
Computing B-Stationary Points of Nonsmooth DC Programs
Motivated by a class of applied problems arising from physical layer based security in a digital communication system, in particular, by a secrecy sum-rate maximization problem, this paper studies a nonsmooth, difference-of-convex (dc) minimization problem. The contributions of this paper are (i) cl...
Saved in:
Published in: | Mathematics of operations research 2017-02, Vol.42 (1), p.95-118 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Motivated by a class of applied problems arising from physical layer based security in a digital communication system, in particular, by a secrecy sum-rate maximization problem, this paper studies a nonsmooth, difference-of-convex (dc) minimization problem. The contributions of this paper are (i) clarify several kinds of stationary solutions and their relations; (ii) develop and establish the convergence of a novel algorithm for computing a d-stationary solution of a problem with a convex feasible set that is arguably the sharpest kind among the various stationary solutions; (iii) extend the algorithm in several directions including a randomized choice of the subproblems that could help the practical convergence of the algorithm, a distributed penalty approach for problems whose objective functions are sums of dc functions, and problems with a specially structured (nonconvex) dc constraint. For the latter class of problems, a pointwise Slater constraint qualification is introduced that facilitates the verification and computation of a B(ouligand)-stationary point. |
---|---|
ISSN: | 0364-765X 1526-5471 |
DOI: | 10.1287/moor.2016.0795 |