Loading…
Relaxation Height in Energy Landscapes: An Application to Multiple Metastable States
The study of systems with multiple (not necessarily degenerate) metastable states presents subtle difficulties from the mathematical point of view related to the variational problem that has to be solved in these cases. We prove sufficient conditions to identify multiple metastable states. Since thi...
Saved in:
Published in: | Journal of statistical physics 2013-03, Vol.150 (6), p.1080-1114 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The study of systems with multiple (not necessarily degenerate) metastable states presents subtle difficulties from the mathematical point of view related to the variational problem that has to be solved in these cases. We prove sufficient conditions to identify multiple metastable states. Since this analysis typically involves non-trivial technical issues, we give different conditions that can be chosen appropriately depending on the specific model under study. We show how these results can be used to attack the problem of multiple metastable states via the use of the modern approaches to metastability. We finally apply these general results to the Blume–Capel model for a particular choice of the parameters for which the model happens to have two multiple not degenerate in energy metastable states. We estimate in probability the time for the transition from the metastable states to the stable state. Moreover we identify the set of critical configurations that represent the minimal gate for the transition. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-013-0717-9 |