Loading…
Influence of graphene nanoplatelets on curing and mechanical properties of graphene/epoxy nanocomposites
The influence of graphene nanoplatelets (GNPs) on the curing of an epoxy resin based on diglycidyl ether of bisphenol A (DGEBA) and cross-linked with 4,4′-diaminodiphenylmethane (DDM) was studied. Dynamic mechanical properties and tensile properties of the corresponding graphene/epoxy nanocomposites...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2016-08, Vol.125 (2), p.629-636 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The influence of graphene nanoplatelets (GNPs) on the curing of an epoxy resin based on diglycidyl ether of bisphenol A (DGEBA) and cross-linked with 4,4′-diaminodiphenylmethane (DDM) was studied. Dynamic mechanical properties and tensile properties of the corresponding graphene/epoxy nanocomposites were obtained. Two compositions 1 and 5 mass% of GNPs were studied. The cross-linking reaction of the epoxy resin is accelerated in dispersions with 5 mass% GNPs. In the presence of GNPs, the curing reaction becomes less exothermic, obtaining less perfect epoxy networks compared to neat epoxy (DGEBA–DDM) thermoset. Accordingly, the glass transition temperatures (
T
g
) of the nanocomposites are lower than that of the neat epoxy thermoset. This effect is not detected for low content of graphene (1 mass%). Protocol of curing having two isothermal steps leads to more perfect networks than the dynamic curing in the DSC. The
T
g
reduction is minimized in the samples cured through two isothermal steps. The storage moduli of the nanocomposite containing 5 mass% graphene, both in the glassy (
T
T
g
) states, are higher than the ones of neat epoxy thermoset, being most pronounced this effect at
T
>
T
g
. Tensile tests confirmed the higher elastic moduli of the nanocomposites; however, a decrease in strain at break and tensile strength was observed for the nanocomposite containing 5 mass% of GNPs. This brittle behavior is consistent with the morphology of the samples studied by scanning electron microscopy. |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-015-5162-3 |