Loading…
Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations
We consider a single-server scheduling problem given a fixed sequence of appointment arrivals with random no-shows and service durations. The probability distribution of the uncertain parameters is assumed to be ambiguous, and only the support and first moments are known. We formulate a class of dis...
Saved in:
Published in: | Operations research 2017-11, Vol.65 (6), p.1638-1656 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a single-server scheduling problem given a fixed sequence of appointment arrivals with random no-shows and service durations. The probability distribution of the uncertain parameters is assumed to be ambiguous, and only the support and first moments are known. We formulate a class of distributionally robust (DR) optimization models that incorporate the worst-case expectation/conditional value-at-risk penalty cost of appointment waiting, server idleness, and overtime into the objective or constraints. Our models flexibly adapt to different prior beliefs of no-show uncertainty. We obtain exact mixed-integer nonlinear programming reformulations and derive valid inequalities to strengthen the reformulations that are solved by decomposition algorithms. In particular, we derive convex hulls for special cases of no-show beliefs, yielding polynomial-sized linear programming models for the least and the most conservative supports of no-shows. We test various instances to demonstrate the computational efficacy of our approaches and to compare the results of various DR models given perfect or ambiguous distributional information.
The e-companion is available at
https://doi.org/10.1287/opre.2017.1656
. |
---|---|
ISSN: | 0030-364X 1526-5463 |
DOI: | 10.1287/opre.2017.1656 |